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A NECESSARY AND SUFFICIENT CONDITION FOR ADMISSIBILITY
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1. Summary. In Section 2 we give the usual definition for admissibility of a
strategy in a two-person zero-sum game, and obtain a simple sufficient condition
for admissibility of a strategy for the second player which is hardly more than
a formal statement of a procedure frequently used in proving admissibility.
In Section 3 we introduce the notion of strict admissibility, which is slightly
stronger than admissibility, but equivalent to it in the case where the space
of strategies of the second player is weakly compact in the sense of Wald. We
then obtain a necessary and sufficient condition for strict admissibility, in the
form of a condition on the upper values of a sequence of games associated with
the original game. In Section 4 we show that, under the additional condition
that the minimax theorem holds for certain associated games, the condition of
Section 2 is necessary as well as sufficient. The results have a formal resemblance
to those of Hodges and Lehmann [4].

2. Introduction. Let A and B be sets and K a real-valued function on 4 x B
such that for every a ¢ A

¢y pla) = ll,nﬁ K(ab) > — .

Following von Neumann [1], we refer to the triple (4, B, K) as a two-person
zero-sum game, having in mind the situation where the first player chooses
an element a of A, the second player an element b of B, the two choices being
made simultaneously, and then the second player pays the first player the
amount K(a, b). The set B is partially ordered by the relation X where b, X b,
means that, for every a ¢ 4,

(2) K(a, bl) é K(a, bz).
If this holds we say that b is better than b, . If, for all q,
(3) K(a) bl) = K(a) b2)1

we write b, & by and say that b, is equivalent to by . If b, X b, but not b, X b,
we write by < b, and say that b, 7s strictly better than b, . We say that b, is ad-
massible if there exists no b, strictly better than b, .

We shall need a few more definitions before we can indicate the principal

result of this paper. The strategy b, is said to be e-Bayes with respect to a ¢ A if
4) K(a, b)) < inf, K(a, b) + ¢,
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and to be Bayes if this holds for ¢ = 0. If @ is a o-algebra of subsets of 4 such
that for each b, K(-, b) is @ measurable, and Z is a convex set of probability
measures on @, including at least all those measures, denoted by [a], concen-
trated at a single point a ¢ A, then the game (&, B, K') with

©) Kb = [ Kb &

will be called a convex extension of K. In order to make sure that this integral
is defined we must make an additional assumption on K, and we shall assume
K bounded below. A reasonable alternative might be the condition symmetric
to (1), that is,

6) sups K(a, b) < « for all b.

THEOREM 1. If by vs such that for every a, € A and ¢ > O there exists ¢ ¢ & and
6 > 0 such that b, s ed-Bayes with respect to (1 — 8)¢ -+ é[a:], then by is admis-
sible.

Proor. Suppose b, is not admissible. Then there must exist b, which is strictly
better than b, , that is,

™ K(a, bs) = K(a, b))

for all @ with strict inequality for some a, say a; . By assumption, there exists
6>0 and £ ¢ E such that

K'((1 — 8)¢ + d[ai], by) < infy K'((1 — 8)§ + d[a], b) + €
= K'((1 — 8)¢ + dlad], be) + €
= (1= 0K b) + 6K(ar, b)) + €

so that K(a,, b)) = K(a;, bs) + e Since e is arbitrary, K(a,, b)) < K(a1,.b,),
which contradicts the hypothesis that (7) holds with strict inequality at a; .
This theorem essentially follows the reasoning used by Blyth [2] and other
authors in proving admissibility. In Section 4, assuming weak compactness of
B in the sense of Wald [3], and assuming the minimax theorem to hold for a
class of games associated with K’, we shall show that this condition is also
necessary. The set B is said to be weakly compact with respect to K in the sense
of Wald if, for every sequence {b.}, there exists by and a subsequence {b;;}
such that
®) lim K(a, b:) = K(a, by).
)
We observe that, by Fatou’s Lemma, if B is weakly compact with respect to
K, and K is bounded below, then B is weakly compact with respect to K.
The necessity of the condition of Theorem 1 could perhaps be proved more
quickly without the intermediate results of Section 3. However, the necessary
and sufficient condition, valid under much weaker conditions which we aobtain
there, is likely to be of some interest.
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3. A necessary and sufficient condition for admissibility. In this section we
shall use the notation and assumptions of Section 2 through (2.4), and also
the definition of weak compactness (2.8). We shall also need the notion of
strict admissibility, slightly stronger than admissibility. The strategy b; is
said to be strictly admissible if for every a; ¢ A and ¢ > 0, there exists § > 0
such that, for every b for which K(a;, b) < K(a,, b)) — e, there exists a such
that K(a, b)) = K(a, by) + . It is clear that strict admissibility implies admis-
sibility.

THEOREM 2. If by is admissible and B is weakly compact with respect to K, then
bo is strictly admaissible.

Proor. Suppose B is weakly compact in the sense of Wald and b, is not strictly
admissible. Then for some ay ¢ A and some e > 0 there exists a sequence {b;}
such that

(1) K(ao,b) < K(ao, bo) — ¢  foralli =1,2, -,
2 lim sup [K(a, b;) — K(a, by)] < 0.
1—o0 acd

By the assumption of weak compactness there exists a subsequence {b;,} and an
element b’ such that

3) lim K(a, b;;) = K(a,b’) forall a.

J—0
It follows that
sup [K(a, b") — K(a, b)) < sup [lim K(a, b;}) — K(a, bo)]

acA acA j—oo

(4) = sup l_iI__n [K(a} bi,‘) - K(a) bO)]
acA j—o
< lim sup [K(a, b)) — K(a, b)] < 0.
J—0 acd
Similarly,
(5) K(ao ’ b') = K(ao y bo) — €

so that b’ is strictly better than b, . Thus b, is not admissible.

TrEOREM 3. In order that by be strictly admissible, it is necessary and sufficient
that for every ao
(6) l?n Lgf sup {K(as,b) — K(ao, bo) + v[K(a, b)) — K(a, b))} = 0.

y—00
In order to simplify the writing we assume without essential loss of generality
that, for all a, K(a, by) = 0. Then (6) becomes

) lim inf sup {K(a0,d) + vK(a, b)} = 0.

y—o b a

Also ap may be taken as fixed throughout the proof.
Proor oF NECESSITY. Suppose by strictly admissible and let §. be the § whose
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existence is asserted in the definition of strict admissibility. Let S, be the set
of all b such that

(8) K(ap,b) < —e

and S, its complement. Then
lim inf sup [K(ao, b) + vK(a, d)]

Yy b a
= lim min { inf [K(a,d) + v sup K(a, b)],

Y =0 beS ¢

(9) inf [K(as,d) + v sup K (a, D)1}

beS¢

2 lim min {p(a) + ¥8., —e + v inf sup K(a,b)} = —
b a

Y=

The last step follows from the fact that, by the admissibility of by, for every b
there exists a such that K(a, b) = 0, so that

inf sup K(a, b) = 0.
b a

Since e was arbitrary, this completes the proof of necessity.
Proor orF SurFICcIENCY. Supposing that (7) holds we have for every ¢ > 0,
0 < lim inf sup [K (a0, b) + vK(a, )]

Y- b a

< lim inf sup [K (a0, b) + vK(ao, b))

y—o beS, a

(100 < lim [sup K(ao, b) + v 1nf sup K (a, b)]

Yo beS¢

= lim [—e + v mf sup K(a,, b)l.

]
Consequently, there exists y. > 0 such that
(11) —1e¢ £ —e + v, inf sup K(a, b).

beS, a
Thus the definition of strict admissibility is satisfied with § = %e¢/v. .
The proof shows that (6) could have been stated with lim replaced by lim or
by lim, or with = replaced by =, or both.
CoRroLLARY. If (6) holds for all ay , then by vs admissible. If B vs weakly compact,
then the converse holds.
This is an immediate consequence of Theorems 2 and 3.

4. Admissibility in the presence of the minimax theorem. In this section,
we suppose K is bounded below and possesses a convex extension (=, B, K’)
as described around (2.5). We shall also suppose the minimax theorem applies
in (2.6) when K is replaced by K’, that is,

(1) il;f sup {K(ao, b) — K(ao, bo) + v[K'(§, b) — K'(&, bo)}

= sup ir;f {K(ao, b) — K(ao, bo) + v[K'(§, b) — K'(§, bo)}.
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THEOREM 4. Under the above conditions, in order that by be admissible it is neces-
sary and sufficient that for every ao and every e¢ > 0 there exist & ¢ = and 6 > 0 such
that by is ed-Bayes with respect to (1 — 8)& + 6[aq].

Proor. Using the fact that

) sup [K'(§ b) — K'(¢ bo)] = sup [K(a, b) — K(a, bo)]

together with (1), we find that (3.6) is equivalent to
(3) lim sup inf {K(a0, ) — K(ao, bo) + 7IK'(£,0) — K'( bo)]} 2 0.

Y00

If welet 6 = 1/(y + 1) and use the fact that

@ T RGD + o Ky = K (2 4 ),

1+ 149 14+«
we find that (3) is equivalent to

® lim %sgp inf [K'(1 — 8)¢ + dladl, b) — K'((1 — ) + olad], bo)] 2 .

This is equivalent to the assertion that for every ¢ > 0 there exist & > 0 and
& ¢ E such that

(6) infy K'((1 — 8)& + 8lad], b) = K'((1 — 8)& + 8[ao], bo) — €.
The theorem follows immediately.

REFERENCES

[1] J. voN NEUMANN, “Zur Theorie der Gesellschaftsspiele,”” Math. Ann., Vol. 100 (1928),
PP. 295-320.

[2] C. Buyrr, “On minimax statistical decision procedures and their admissibility,”
Ann. Math. Stat., Vol. 22 (1951), pp. 22-42.

[3] A. Wavp, Statistical Decision Functions, John Wiley and Sons, New York, 1950.

[4] J. Hopaes, aNp E. LerMaNN, “The use of previous experience in reaching statistical
decisions,” Ann. Math. Stat., Vol. 23 (1952), pp. 396-407.

Note added in proof. I believe this theorem to be potentially useful, but cannot
now give any non-trivial examples. Attempts to apply the sufficiency often run
into analytic difficulties. The necessity was useful heuristically in the recogni-
tion of the inadmissibility of the usual estimate of the mean of a multivariate
normal distribution of dimension greater than or equal to 3. (Abstract in Ann.
Math. Stat., Vol. 26 (1955), p. 157; to appear in the Proceedings of the Third
Berkeley Symposium on Mathematical Statistics and Probability). A result similar
to Theorem 4 has been obtained independently by LeCam.



