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Summary. The problem is considered of obtaining bounds for the (cumu-
lative) distribution function of the sum of n independent, identically distributed
random variables with & prescribed moments and given range. For n = 2 it is
shown that the best bounds are attained or arbitrarily closely approached with
discrete random variables which take on at most 2k + 2 values. For nonnega-
tive random variables with given mean, explicit bounds are obtained when n =
2; for arbitrary values of n, bounds are given which are asymptotically best in
the “tail” of the distribution. Some of the results contribute to the more general
problem of obtaining bounds for the expected value of a given function of in-
dependent, identically distributed random variables when the expected values of
certain functions of the individual variables are given. Although the results are
modest in scope, the authors hope that this paper will draw attention to a
problem of both mathematical and statistical interest.

1. Introduction. This paper considers part of the following general problem.
Let © be the class of all dfs (distribution functions) F(x) on the real line
which satisfy the conditions

0 z<4,
fg,-(:c) dFz) = ¢, i=1,--,k Flz) =
1 z> B,
where the functions ¢:(x), - - - , g«(x) and the constants ¢;, ---, ¢k, 4, and B
are given. We allow that A = — » and/or B = «. Here and in what follows,

when the domain of integration is not indicated, the integral extends over the
entire range of the variables involved.
Let K(x1, -+, Z.) be a function such that

W) = [ [ K, w0 dP@) - dF)

exists for all F in ® in the sense that the multiple integral is equal to the re-
peated integral taken in an arbitrary order. The problem is to determine upper
and lower bounds for ¢(F) when F is in D.

Forn =1, gix) = z',and K(z) = 1 or 0 according asz < tor > ¢, as well
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as for other functions K(z), an extensive literature on the subject exists; for
some references see [4].

For n arbitrary, Robbins [6] showed that the Bienaymé-Tchebycheff bound
for Pr (|X1 + -+ 4+ X.| = ¢), where the X, are independent and identically
distributed with zero mean and given variance, can be improved when n > 1.
Plackett [5], Gumbel [2], and Hartley and David [3] obtained the best possible
bounds for the expected sample range and the expected value of the largest
observation, in the case when the mean and the variance are given, assuming
that the common df is continuous. In a problem analogous to the general problem
stated above, but without the assumption that the n variables are identically
distributed, one of the authors [4] showed that under general conditions the
best bounds are attained or arbitrarily closely approached with step-functions
in © which have at most £ 4 1 steps.

The present paper concentrates attention on the case where KX = 1 or 0
according as a given function f(z;, ---, z.) 1s or is not contained in a given
set. The method used permits one to obtain the closest bounds only for n = 2.
If niseven, f = &1 + --- + ., and g;(z) = z', the bounds for n = 2 can be
applied in an obvious way, but in general will not be the best ones. More general
functions K are considered only insofar as they can be handled by the same
method.

Theorem 2.1 states conditions under which we need consider only step-func-
tions in D. Theorems 2.2 and 2.3 show that for functions K(z, y) of a certain
type we may restrict our attention to step-functions with a bounded number of
steps. In Theorem 3.1 an explicit expression for the least upper bound of
Pr(X + Y = ¢) is obtained when X and Y are nonnegative, independent, and
identically distributed with given mean. In Section 4 bounds for the analogous
case with n summands are considered.

2. The least upper bound of [[K(z, y) dF (z) dF (y). Let K(z, y) be a function
such that

(21) wr) = [[ K, y) ar@) dr)

exists for all F in ®, in the sense that the double integral equals the repeated
integral. The problem is to determine the least upper bound of ¥(F) for all
F in D.

Let ©* be the class of all F in D which are step-functions with a finite number
of steps. The following theorem shows that if D is the class of dfs with & pre-
scribed moments and given range, and y(F) is the probability that two inde-
pendent observations on a random variable with df F fall into a set of a rather
general type, we may confine our attention to dfs in D*.

TurEOREM 2.1. Let gi(x) = x™, where my, ---, my are positive inlegers. Lel
K(x, y) = 1 or 0 according as (z, y) s or is not contained in a Borel set S such
that the sets {x: (z, y) € S, y fixed} and {y: (z, y) € S, x fixred} are unions of a
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finite and bounded number of intervals (which may be infinite). Then

sup ¢(F) = sup y(F).
FeD) FeDk

The theorem follows immediately from an obvious analog of Lemma 2.1 in [4]
and Lemma 3.1 and Theorem 4.1 of [4].

It can be seen from [4] that the reduction to distributions in ©* is possible
under more general conditions.

We shall now derive sufficient conditions under which, given a step-function
F in D with m steps, we can construct a step-function G in O with less than m
steps such that ¢(G) = ¢(F).

A step-function F in D with exactly m steps is of the form

(2.2) F(z) = P; if a;j=2z<aju, ji=0,1,---,m,
where
23) —x =g <u<a< - <an < App = ©, A=Za, an < B;
(2.4) 0=P0<P1<"‘<Pm—l<Pm=1;
m—1
(2.5) Zlhijpj = ¢; — gi(am), t=1,-,k
o
(26) hif=g’i(a]')_gi(aj+l)7 'l=].,,k, j=17”"m_1'
Let
(27) G($)=Pj+tDj if a; =z < aj41, j=0,~--,m.

In order that G(z) be a df in D it is sufficient that the numbers ¢ and D; satisfy
the conditions

(2.8) Dy = D,, = 0;

(2.9) 0<Pi+tD =P, +tDy= -+ £Ppa1+1tDn, =1

(2.10) 7:2 hi; D = 0, t=1,--- k.
If F and G are defined by (2.2) and (2.7), we have

(2.11) ¥(@) — ¥(F) = tz L;D; + t2i§ 'g Li;D;D;,

where, with K;; = K(a;, a;),

(2.12) L = g (Kij + Kji — Kiju — Kjn,)(Pi — Piy),

(2.13) Li;=Kij — Kipa,j — Kijpu + Kig1,j41 .

LemMma 2.1. Let F be a step-function in D with exactly m steps, defined by (2.2)
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to (2.6), where m > k + 1. Suppose that the integers uy , - - - , 41 can be so chosen
that

1= <u < --- <Up =m-—1
and the equations

k+1
(2.14) > hi, 2 = 0, i=1---,k
r=l
imply
k+1 k41
(2.15) 22 Luu,:2, 2 0.

r=1 g=1

Then there exists a step-function G in D with less than m steps, for which
¥(G) 2 ¥(F).

Proor. Let G(z) be defined by (2.7), and let D; = 0 forj = uy, -+, Uy .
Let X = 1 or 0 according as the rank of the matrix

hlu 1 ccc hluk+|
h’ml e kkuk+1
Lul . Luk+1 |
is equal to or less than k 4 1. Then the equations (2.14) and
k1
> Lz, =\
r=1

have a solution (D,,, -+, Dy,,,) = (0, ---, 0). Having thus fixed the D;,
let ¢ be the largest number which satisfies the inequalities (2.9). This number
exists and is positive. With this choice of the numbers ¢ and D;, G is a step-
function in D with less than m steps. Furthermore, by (2.11),

k+1 k41

W@ —y(F) =t + £ Z; Z‘i Ly,D.,D,, = 0.
The proof is complete.

The next theorem shows that if K(z, y) is of a certain form, and if we restrict
ourselves to the class D* of step-functions in D with a finite number of steps,
we need consider only step-functions with a bounded number of steps.

Let ©, be the class of all F in © which are step-functions with at most m
steps.

TrEOREM 2.2. Suppose that K(x, y) is of the form

k

K(x’ y) = E Z a'liigi(x)g:i(y) 'lf bt-l = f(x7 y) < bh t = 1’ R

1=0 j=0
where go(x) = 1, the a.i; are arbitrary constants, the b, satisfy

-— o0 =bo<b1<"’<ba—l<bc=°°’
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and f(z, y) is a strictly increasing function in each of its arguments when the other
argument is fixed. Then
sup ¢(F) = sup (F).

FeD* FeDsk 44

The theorem remains true if in the inequalities b,_, < f(z, y) < b, some signs <
are replaced by < or vice versa, provided that the s sets defined by the inequalities
cover the entire plane.

Proor. Let F(z), as defined by (2.2) to (2.6), be an arbitrary step-function
in D with exactly m steps, where m > sk + s. It is sufficient to construct a step-
function G in D with less than m steps such that ¢(G) = ¢(F). Let m,, for

=1, .-+, s, denote the number of indices u, with 1 < u < m, for which

b1 = flaw, @) < b,.
Then s max (m;) = (my + --- + m,) = m > s(k + 1). Hence there exists a
t for which m, = k 4+ 2 and an integer n such that
be1 = f(@n, @n) < f(@ngrs1, Guprsr) < be.

The assumption about f(x, y) implies that

k

k
K,, = E Z au;gia,)gi(a,) n<v,w=<n+k+1.

=0 j==
By (2.13) and (2.6) this implies
k k
Lo = 20 2 auij hahjw n<vw=n-++k
i=1 j=1
Hence if we let u, = n 4+ r — 1forr = 1,2, ---, k 4+ 1, the conditions of

Lemma 2.1 are satisfied. The proof is complete.

If gi(z) = ', that is, if D is the class of distributions with given moments
up to order k£ and given range, the assumption of Theorem 2.2 means that
K(z, y) is piecewise polynomial, of bounded degrees, in sections of the plane
separated by curves of negative slope. If K(x, y) is piecewise polynomial in
sections separated by curves of positive slope, a similar reduction of the problem
to the case of step-functions with a bounded number of steps is in general im-
possible. For example, let K(z, y) = max (z, y), and let D be the class of dfs
F with

fxdF(x) =0, fx2 dF(z) = 1.

Under the restriction to continuous functions F(x), this is a special case of a
problem considered by Hartley and David [3] and Gumbel [2]. For an arbitrary
df F(x) we can write

W) =2 [ 2F(@) dF@), F@) = 4FG ~ 0) + Fz + O)l
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Using Schwarz’s inequality, we have for any constant ¢ and any F in D
1/2
WP te=2 [ @+ of e s 2 (0 + ) [ 16 ar)

If F(z) is continuous, [F(z)’ dF(z) = %, and the bound
Y(F) £ min, {2-3771 + &) — ¢}

is attained with a continuous df in ©, as shown by Hartley and David.
Now let F(z) be a step-function with at most m steps which takes on the
values0 = P, < P, < --- £ Py £ P,, = 1. Then

4 [ F)* dF(z) = z’"; Py + PP, — Py,

This can be written

m

12/1%)2 dFz) = 4 — 2 ¢t pi = P; — Py,

=1

The conditions D p; = 1 and p; = 0imply Y p° = m™> Hence
[ F@y are) < & — 11208

and the Hartley-David bound cannot be approached arbitrarily closely with
a step-function in © having a bounded number of steps.

Combining Theorems 2.1 and 2.2 we can state that if the conditions of both
theorems are satisfied, then

sup ¢(F) = sup (F).
FeD FeD sk 45
In particular, the conditions of Theorem 2.2 are fulfilled if Y(F) =
Pr{f(X, Y) = ¢}, or = Pr{ |f(X, Y)| 2 ¢}, etc., where Ps{---} is the proba-
bility of the event in braces when X and Y are independent with common df F,
and f(z, y) has the property stated in the theorem. Using Theorem 2.1, we
obtain:
THEOREM 2.3. Let D be the class of dfs F(x) which satisfy the conditions

. . 0 =z < A4,
/x""dF(x) —e, i=1,- k  Flz) =
1 =z > B,
with given integers my , - - -, my, and given numbers cy , + - - , ¢y, A, B, where we may
have A = — o and/or B = . Let f(x, y) be a strictly increasing function in

each of its arguments when the other argument is fixed. Then
sup Prif(X,Y) Z ¢} = sup Pr{f(X,Y) = ¢}.
FeD

FeDok 42
3. The least upper bound of P(X + Y = ¢) when X and Y are nonnegative,
independent, and identically distributed with given mean. As an application of
the results of Section 2 we shall prove the following theorem.
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THEOREM 3.1. Let X and Y be two independent random variables with common
cdf F(z). Let D be the class of dfs F with F(z) = 0 for x < 0 and [z dF(z) = u,
where u > 0. Then

1, ¢
(3.1) sup Pr(X + Y 2 cu) = J4/cz, 2=c¢c=4§;
" l2/c -1/, $=c¢
The three bounds are attained with the respective distributions
PX =u) =1

PX=0)=1-— 2/ P(X = }eu) = 2/c;
PX=0)=1-—1/e, P(X = cu) = 1/c.

Theorem 3.1 should be compared with the solution by Birnbaum, Raymond,
and Zuckerman [1] of the analogous problem without the restriction that X
and Y be identically distributed. If M(c) denotes the least upper bound of
P(X + Y = cu) when X and Y are nonnegative, independent, and have the
common mean u, we have by [1]

1, c = 2;
(3.2) M(c) =<{1/(c — 1), 2 = ¢ =33+ V5);
2/c — 1/¢, 13+ 4/5) £ c.

Hence the bound (3.1) is smaller than the Birnbaum-Raymond-Zuckerman
bound if and only if 2 < ¢ < (3 + V/5).

Proor or THEOREM 3.1. We may and shall assume that 4 = 1. By Theorem
2.3 we need consider only dfs F in © which are step-functions with m =< 4
steps. Then F is of the form (2.2) to (24), where A = 0 and B = «, and
ZTGj(Pj - Pj_l) = 1. We have

I, z+y =g
0, 4y <ec
Hence the numbers K;; = K(a;, a;) satisfy the conditions

Kij=0o0rl; Ki;=K;; K;=<K¢ if ¢<7.

K(z,y) =

The sequence (Ku, K», -+, Kum) consists of a sequence of zeros followed
by a sequency of ones. The reasoning used in the proof of Theorem 2.2 shows
that any distribution for which there are more than two consecutive zeros or
more than two consecutive ones in this sequence can be replaced by a distribu-
tion with less than m steps which does not decrease the value of Y(F).

Hence for m = 4 we need consider only matrices || K;|| of the four types

jooo-l' 14’0000 0 0 0 1 0011
000 -] 0011 0011 |00 11
00 11 o111 ‘0111|’ 111 1)
' 1 1) 0 1 1 1 111 1) 1 1 1 1§

i
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where the numbers represented by dots need not be specified. The corresponding
matrices ||L;;|| are

I II III Iv
00 0 10 0 1 -1 O o0oO
01 , 1 -1 0y, 1 -1 o, 0 -1 0
. 0 0 00 -1 0o 0 0O 00

We shall apply Lemma 2.1 to show that in every case there exists a df in D
with at most three steps which does not decrease the value of ¢(F). It is sufficient
to find integers u and » with 1 £ » < v < 3 such that the equation

3.3) (@u — aus)r + (@8 — @)y = 0
implies
(34) Ly 4+ 2Lty + Lay® 2 0.

Inequality (3.4) is satisfied in Case I with w = 1 and » = 2, and in Cases 11
and IVwithu = 1 and v = 3. In Case III, when u = 1 and » = 3, the left
side of (3.4) is —2zy, which is nonnegative by (3.3), since a; — a;41 < 0.

Hence we may confine our attention to step-functions in ® with m < 3
steps.

If m = 3, we have to consider the matrices ||K;;|| of the forms

00O 00O 0 01
0 0 0y, 0 0 1y, 0 0 1},
0 01 011 1 11
0 0O 0 01 01 1’
01 1|, |0 1 1y, 1 11
01 1 111 11 1
The corresponding matrices ||L;;|| are
A B c D E F
00 0 1 0 0 10 1 -1 -1 0
(S 1 —-1) 0 -1 0 0|’ -1 o’ 00

In applying Lemma 2.1 we have to take v = 1 and » = 2 and show that
(3.3) implies (3.4). This is true for the matrices 4, D, and E. In Cases B, C,
and F, Lemma 2.1 is not applicable.

In Case C, ¢(F) = 1 — P; . If G(z) is defined by (2.7) with m = 3, we have

¥(G) — ¢(F) = —t Dy[2(P; + ¢ D2) — ¢ D,
where ¢ and D, satisfy the conditions
(3.5) (a1 — as) D1 + (a2 — a3) D, = 0,
(3.6) 0<P+tDhsP,+tD, £1.
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Let D, = —1. Then D, is given by (3.5). Let ¢ be the largest number which
satisfies (3.6). Then ¢ > 0, @ isin D;, and Y(G) — ¥(F) = 0.
In case F, ¢(F) = 1 — P;, and similar reasoning shows that this case

also can be reduced to a step-function with at most two steps.
The only remaining case with m = 3 is Case B. Here we can write Y(F) =
2p,ps + p; , where (admitting the possibility that F has less than three steps)

3.7 P+ P+ ps =1, apr + axp; + asps = 1;
(3.8) nz0, p20, ps = 0;

(3.9) 0= =asa;

(3.10) a + a; <ec, 2a, < ¢, cSa+ az.

Expressing ¢(F) in terms of a,, a,, a3, p1, we get

—1— (a5 — a)p1
F) = (1 — 2 _ 2’ — [2£] 3 1 .
»ll/( )=Q0Q-=-p)" —p:, P prg——
If a,, a3, and p, are held fixed, Y(F) is a decreasing function of a, . Hence we
maximize ¥(F) by choosing the least possible value for a; . This is the greatest
of the bounds given by the inequalities p; = 0 and @, = 0. If this bound is

given by one of the equations p; = 0, we get a distribution in D, . Hence we
may assume that the least value is a; = 0, so

a3 — 1 — a3

2=
P as — Q2

and ¥(F) is a decreasing function of a; when a; and p, are fixed. The only lower
bound for a, which does not necessarily correspond to a distribution in D, is
a; = ¢ — a3 . In this case

=(1—p1)aa—1=1—p1+c(1—1>1)—2
2a3; — ¢ 2 2(2a; — ¢)

D2

This is a monotonic function of a; (possibly a constant) when p; is held fixed.
Hence the maximum is attained at one of the endpoints of the range of a;.
This range is given by the inequalities (3.8) to (3.10) with a; = 0 and ay =
¢ — az. Its endpoints correspond either to distributions in D, or (if given by
a1 + a; = c or 2a; = c) to cases where the value of y(F) exceeds 2psps + p3
and which already have been disposed of.

Thus we need consider only dfs in D, .

If ¢ < 2, we have ¢(F) = 1 for the df in ©, which has a single step at z = 1.
Thus
(3.11) supy(F) =1 c <2
FeD

Henceforth we assume that ¢ > 2.
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A distribution F in D, assigns to the points a; and a. the respective proba-
bilities

a2_1 p2=1—ala O

, 1
a: — ai az — a1

IIA
IA
IIA

P = a1 as.
If ¢ £ 2a;, we have ¢ < 2, a case already considered. If ¢ > 2a,, then

Y(F) = 0, a case which may be disregarded. We are left with the two cases
1) 21 <c¢c=a + a, (i) a4+ a <c=2a.

In Case (i), ¢(F) = 1 — p}, which is a decreasing function of a; . The lower
bound for g, is max (0, ¢ — a»).

Ifay = 0= ¢ — ay, then p = 1 — 1/az, so that ¢(F) is a decreasing func-
tion of @, . The lower bound for a; is max (1, ¢) = ¢, and we obtain

Y(F) =1— (1 —1/c)* = 2/c — 1/

Ifa, = ¢ — a; = 0, then
‘ e —1 _ 1 c— 2
2as — ¢ 2 ' 2Q2a.—c)’
so that ¢(F) is an increasing function of a;. Since a; < ¢, we obtain the same
maximum of ¢(F) as in the previous case.

In Case (i), ¥(F) = p;, which is a decreasing function of a, . Hence we let

a2 = %c. Then ¢(F) is a decreasing function of a;, and hence is maximized for
a; = 0. We get ¢(F) = 4/c’. Hence

(3.12) sup Y(F) = max {2/c — 1/¢, 4/}, c> 2.

+

=

Theorem 3.1 now follows from (3.11), (3.12) and the stated conditions under
which the bounds are attained.

4. Bounds for P(X; + --- + X, = ¢). Let Af{,. =YX, + - + X,),
and let w,(t) denote the least upper bound of P(X, = {u) when X;, ---, X,
are nonnegative, independent, and identically distributed with mean u. It is
easily seen that for every n

w() =1, ift <1, wen(@) < w,(t), s=1,2,:-.
By Markov’s inequality, wi(¢) = 1/t if 1 < ¢. By Theorem 3.1,

o) = 1/¢ 1 <t <5/4,
@R =1/t — 1/48 5/4 < t.
Let w}(t) be the least upper bound of P(X, = tu) when X;, ---, X, are

independent and nonnegative with common mean u. Clearly, w.(f) < wi(t).
From [1] (in particular, Corollary 2.2) we have

(1_1 3+6 _,
=N -1 3n + 1+ (50" + 6n + 5)"
t

Sl < {; mn arbitrary.
nt 4 4n ’ .

n even;
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On the_other hand, for any random variablés X which satisfy our assump-
tions, P(X, = tu) is a lower bound for w,(f). In particular, if nt = 1 and X; = 0
or nt with respective probabilities 1 — 1/nt and 1/nt, we get

1\" 1 n—1t1
> — — e _
wnlt) 21 (1 nt> > ¢ on £’

Hence we have for all positive integers n

_1 _146n—-11 . 3n+1+ (n’+6n+5)"
WO o) =g p ¥ in

IIA

IIA

1 0 <1,
n

(4.2) o =L —LHOL 4 5 <y <1

Siv

Equation (4.1) is also true for w}(£), and (4.2) holds for ws,(¢) if 2 (3 + v/5) < &.
Thus for large values of ¢ the known bounds for w,(¢) and w5 (f) cannot be im-
proved substantially.
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