ON A CLASS OF DECISION PROCEDURES FOR RANKING
MEANS OF NORMAL POPULATIONS!

By K. C. SEAL

Unaversity of North Carolina

Summary. An infinite class of decision rules having several desirable proper-
ties is suggested for choosing a group of populations from a given set of normal
populations which should contain the population with the largest mean. The
problem of selecting one member from this infinite class of rules has also been
studied.

1. Introduction. In recent years it has been recognized ({1}, {3], [4], [5}, (9],
(10}, [11]) that the conventional test of homogeneity, such as the F-test in the
analysis of variance for testing the equality of several population means, does
not supply all the information that the experimenter seeks. In many practical
situations it is unrealistic to assume that the population means of several essen-
tially different populations will be equal. A sufficiently large sample will thus
enable the experimenter to detect this difference at any preassigned level. In
most cases what the experimenter actually wants is a decision procedure which
would tell him which population or populations possess a desired characteristic.
For example, the experimenter may be interested in determining the population
with the largest mean, from a set of normal populations. Alternatively he may
desire to select from a given number of populations a group containing the popu-
lation having the largest mean.

Suppose there are n + 1 normal populations N(u:, 1), =0,1,2, --- , n,
with unknown means and a common but unknown variance and that k£ random
observations z;, (¢ = 0,1, --- ,n; a = 1,2, ---, k) from each of the n + 1
normal populations are given, where z;, is one of the £ observations from the
1th population. Under our assumptions the n 4+ 1 sample means

k
Ty = E x,ja/k
a=1
will obey N(u;, o} / k),% = 0,1, --- , n, and an estimate

n k
$=22 @a—2)'/ (k= D+
of o7 can be obtained which is independent of the sample means z,,¢ = 0, 1,
-+« , n. We may, therefore, assume for mathematical convenience that just one
random observation z; from each of » + 1 normal populations N(u;, ¢°), ¢ =
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388 K. C. SEAL

0,1, --- , m,is given, where ¢® = o} / k is estimated by
f=s/k= EOZ (@i — 2" / k(6 — 1)(n + 1)]

and this is assumed to be known. Clearly this estimate s* of ¢” is stochastically
independent of the given observationsz;,7 = 0, 1, - - - , n. It is desired to choose
a group of populations from the above n + 1 populations, with the help of some
decision rule which ensures that the least upper bound of the probability of not
including in the group the population with the largest meanisa (0 < a < 1),
whatever may be the unknown u.’s. Subject to this fundamental requirement we
would like the rule to possess other desirable properties such as:

(a) The property of unbiasedness, i.e., the probability of rejecting any popula-
tion not having the largest mean is not less than the probability of rejecting the
population having the largest mean. (Analogy of this property to the property of
unbiasedness in the theory of testing of hypothesis should be noticed.)

(b) The property of gradation, i.e., corresponding to any a (0 < & < 1),
there exists a constant u. such that the chance of retaining the population with
mean yo in the group is greater or less than «, according as uo is greater or less
than po.. The constant uo, will in general depend on the decision rule as well as
the unknown means of the remaining n populations, and the common variance a.

An infinite class € of decision rules satisfying the fundamental requirement,
together with the properties (a) and (b) is given in Section 2.1. Certain interesting
properties of this class are studied in Section 3. The question of choosing one
member from this infinite class having further desirable properties has been
studied in Section 4.

2. Class C of dec1sxon procedures

2.1. Let y;,2=0,1, --- ,n, be n + 1 random observations from N (0, o)
and let yo) < yp < -+ < y(,.) be n ranked observations among ¥, *:* , Yn -
The y;’s will then deﬁne another set of random variables Y(,) , 1 =1, , M.
It is assumed y; ¥ ¥;, ¢  j, since the set of points (Yo, 1, - -+ , ¥n) in (n + 1)-
dimensional Euclidean space where y; # y;, ¢ % j will be obtalned with prob-
ability 1. Let ta(ci, -+ ,¢n) (c; 2 0,5=1,---,m, >1c = 1) denote the
upper 100 @ % point in the probability density function (pdf) of
@.1.1) or, o 0) = ZLY.;LYO
The class € of decision rules D(c1, -+ ,¢s) (€= 0,5 =1,+--,m, > fci=1)
is defined as follows:

“Reject any observation z, from the given observations z;,¢7 =0, 1, --- , n,
if
(2,12) Zl Cix(i) — Xo > 'Sta(cly ) cn)
and accept otherwise, where zqy < z@ < -++ < Zm are n ordered observations

among (z;, %2, * -+ , Z.). (The n + 1 observations z;,¢ = 0, 1, --- , n, taken



DECISION PROCEDURES 389

from normal populations are again assumed to be distinct.) Proceed as above for
each of n + 1 observations separately, so that each of n + 1 observations in
due turn takes the place of zo and the remaining ordered observations play the
part of £y, -+, Z(ny .”” Thus in the above procedure we may start with the
largest observation among z;,7 =0, 1, --- | n, as x, and work downwards. If
any particular observation is rejected, all other observations smaller than this
observation are automatically rejected.

For the sake of convenience, we shall denote the decision rule D(c;, - - , ¢a)
when (i) ¢;=1/n, ¢ =1,---,n, by D and when (ii) ¢, = 1, and ¢; = 0,
j # r by D(r), 1 £ r £ n. The corresponding auxiliary statistics t(ci, « -+ , cn)
will be denoted by f and #(r).

It may also be noted here that » recawy — 2 (=0, ¢ =1, ---,n,
.1 ¢; = 1) can be written in the alternative form D1 ci(z¢) — o).

3. Some properties of class €.

3.1. An inequality related to location parameters.

TureoreM 3.1.1. Suppose that F((xy — w) /o1, -+ , (Tn — wn) / oa) is the
cumulative distribution function (cdf) of n random variables X;, 1 =1, -+ ,n,
and T(uy, -+, un) ¢s a real-valued function of u;, ¢ = 1, -+ , n, such that

(311) T(ul + ar, ** , Un + an) g T(ul, ctty un),

where (ay, *++ , an) s @ set of real numbers and — o < u; < ©,2 =1, ..., n
If for an arbitrary constant k,

M1, *°° 7”‘"]

g1, On

denotes the probability of T(Xy, -+, X.) > k when X, --- , X, have the cdf
F((.’L‘l - Ilvl)/o'l, ety (xn - ﬂn)/on))then

u1+a1,“-,u»+an:|

01y ***,0p

P[ﬂxh~uxo>k

P[T(Xl)“'7Xn) > k

gP[ﬂ&p~,&)>k

m,“',un]
g1, on
Proor.

P[T(le"';Xn) >k

ot ar, e 7ﬂn+an:|

21 y ", On

=P[T(X1+a17"',Xn+an) >k

p‘l)"',”n‘
1, " ,0n
Biy "y bn

b
101,y °"° ,0n

since T(X:1 + a1, -+ , Xo + @) = T(X,, -+, X.) by hypothesis. Q.E.D.

gP[T(XI)”'an) >k
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From this theorem the following corollaries readily follow:
CoroLLARY 3.1.1. If (3.1.1) 7s satisfied for all
a; 20,2=1,---,n, then P[TXy,---,X,) > k]

18 a nondecreasing function of each u;, 7 =1, -+ , n.
CoroLLARY 3.1.2. If

T+ o, oy tun+ an) > Tur, -+, un),
when a; = 0 and a; > 0 for at least one i, 1 < © < n, and if the cdf of
T(Xy, -+, Xn)
assigns a positive measure to every nondegenerate interval, then
PITX,, ---, X,) > K],

where k is an arbitrary constant, s an increasing function of each p; , 7 =1, - -+ , n.
CoroLLARY 3.1.3. Any strictly monotonic functional of the cdf of

T(Xl y T Xn)"

which satisfies the conditions of Corollary 3.1.2, is an increasing function of u.,
t=1,.--,mn.
ExampLE 1. Consider the pdf

n
f(aul , e ’.’B_,.__ ”’") = H (a; \/Z_)—l e—(zs—u.‘)zlzﬁ

g1 On i=1
and T(X:, -+, Xa) = (2o ¢iX @)™, where r =0,1,2, --- and ¢; = 0,
1 =1, ---,n,and ¢; > 0 for at least one 7.

Here the conditions of Corollary 3.1.2 are easily verified and it follows that

n 2r+1
P[(EC,‘X(,}) >k:|: 7’=0,1,2,"‘,
1=l

is an increasing function of each u;, 7 = 1, --- | n. This result for the particular
caser = 0 will be used in Section 3 in proving the properties of unbiasedness and
gradation for the class @ of decision rules as defined in Section 2.1.

It is well known that if F(z) is the cdf of a random variable X, then expecta-
tion E(X), if it exists, is a strictly monotonic functional of F (cf. [6], p. 152-153;
[12], p. 189). Hence we get from Corollary 3.1.3 that

n 2r+1
E(ZC,‘X(,)) r=0y1y2)"')
=1

is an increasing function of each of u;, ¢ = 1, -*- , n. Much more complicated
functions can be constructed (cf. [13], pp. 25-26) having a similar property.
3.2. Property of unbiasedness. Let Q(u1, - -+ , un ; o) denote the set of normal

populations N(u;, ¢”), i = 1,2, -+, n. Suppose that Xg) < --- < Xy are
n order statistics from Q(u; , - - - , un ; o) when one random observation from each
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of these n normal populations with common variance equal to ¢* is taken. Let
X, be another independent variate obeying N (uo , ¢°). According to our decision
rule D(c;, -, ca) as defined in Section 2.1, the probability of rejecting z, will
then be given by

P[Z C; X(,‘) ol Xo > sty (61, ,Cn)]
7=l

(3.2.1) _ f‘“ ds f‘” dzo f f pls)eEoro2e?
0 '—c0 A
.g(x(l) , T |ﬂ1, ’”n) dz(l) d:c<,,) ,
where
—o <z < < Ty < ©
(32.2) A = <§ 6z > 20+ staler, -+ ,c")>,

9w, -+, @Tw | w1, -+, ua) represents the pdf of Xgu, - -, X from
Qu1, -+, un; o) and
v/2

v —vs2/202 y—
(32.3) p(s) = ST 2o © 2t g1
i.e., the pdf of sample standard deviation s based on » = (k — 1)(n + 1) (cf.
Section 1) degrees of freedom.
Turorem 3.2.1. P[D.1 ¢ X (s — Xo > stacr, ++ , €a)] I8 an increasing func-
‘tzonofeachu.—p., w,t=1---,m.
ProoF. Let X; = X; — po, ¢ = O 1,2, ---,n. Since D 1¢; = 1,

P[Z i Xy — Xo> stelcr, - -, c,.)]

i=

(324) R
= P[Zx c,-X(i) > Xo + staey, - - - ,Cy.)].

For fixed values of X; and s, the conditional value of

-

P[Z CiXEi) > X(l) + Sta(cly e :cﬂ)J
=1

is an increasing function of u; = u; — po, by Corollary 3.1.2 and Example 1
of Section 3.1. Since the distribution of Xg and s does not involve the i , it is
now obvious that the (unconditional) value of

P[Z i Xw — Xo> stoler, -+, c,,)]
i=1

is an increasing function of each u; . Q.E.D.
From this theorem an interesting property of D(c, --- , ¢,) follows.
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CoROLLARY 3.2.1. The probability of rejecting any undesirable population (i.e.,
any population which has not the largest mean) is never less than the probability
of rejecting the desirable population (i.e., that population having the largest mean).

Proor. For the present proof let u@p = -+ = uwm denote the mean of the
given n 4 1 normal populations with common variance ¢*. By our decision rule
D(cy, -+ , cn) the probability of rejecting the desirable population N (u) , ¢")
will depend on

(3.2.5) Popoooealby = B@ 5 0 5 By — ),
which is defined as the conditional probability of

Zlci Y(;) > Yo + Sta(cl: T :cn):

when y, and s are assumed to be held constant. Here Y, ,7 = 1, --- , n, and
Y, are defined as in Section 2.1. The probability of rejecting any undesirable
population N(u¢y , 0"),% = 1,2, --- , n, will, on the other hand, involve

Poyyooea(b@ = B s By = B sttt 5 BGD T B 5 BGHD T RG , TTT
(3.2.6)

H@m)y — l‘(i))'

Comparing the arguments of P,,,..., in (3.2.5) and (3.2.6) we notice that

B — MG Z BG) T KO ROy — M) = B — KO,

wherez=1,2, ---,n,7=12, ---,n;j# ¢. Thus we can make a one to
one correspondence between the n arguments of P,,,... , in (3.2.5) and (3.2.6) in
such a way that no argument of P,,,..., in (3.2.6) is less than the corresponding
argument of Py,,... ., in (3.2.5). Hence from the monotonic behavior of P.,,...,c,
(61, -+, 8,) with regard to 6;,¢ = 1, - - - , n, it follows that the probability of
rejecting any undesirable population N(u¢, o), 4 = 1, -+, n, is never less
than the probability of rejecting the desirable population N(uq) , o). This
property may be denoted by the property of unbiasedness which is therefore pos-
sessed by our decision rules D(c1, -+ ,¢.) (c; = 0, > Fe: = 1). It may also
be noted that all the arguments of P.,,...., in (3.2.5) are nonpositive and so
(3.2.5) will not exceed P.,.... (0, - - -, 0). This implies that the probability of
rejecting the desirable population N(u , ") will not exceed the desired signifi-
cance level @ (0 < @ < 1). Hence a will be the least upper bound of the
probability of incorrect choice (i.e., not including the population with the largest
mean in the selected group), whatever may be the population means. Thus any
rule D(c; , - -+ , ca) satisfies the fundamental requirement as stated in Section 1.
3.3. Property of gradation. From Theorem 3.2.1 it follows that

(33.1) P[Z:l c: X — Xo > staler, -, Cn)]

is a decreasing function of uo ; when po — — o, the value of (3.3.1) is equal to 1
and when po — -+ , the same value is equal to 0. It is easily seen from (3.2.1)
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that (3.3.1) is a continuous function of uo . Hence corresponding to any assigned
value v (0 <y < 1) of (3.3.1) there exists a particular value po, of o for
which (3.3.1) is exactly equal to v. The value ug, will clearly in general depend
upon ui, -+ , Man, o and ¢, --- , ¢, besides the assigned value v, and if

U1y M2,y *° "y Un

increase by a given constant A, then uo, will also be increased by the same con-
stant. In this situation we shall, therefore, find that

(332) PI:ZI C; X(O - XO > Sta(cly Tty cﬂ):l % Y,

according as uo é poy - This property will be designated as the property of

gradation. We shall now study the nature of the unknown constant u,., when vy
is taken tobeequaltoa (0 < a < 1). It will be shown that o, for the decision
rule D is very simple in form, but for other decision rules of class € no such simple
explicit expression for u, can be given. Let X, = .7 X / n. Then X,, will obey
Nt ui/n,a*/n). Let Yy < --- < Y be norder statistics derived from a
random sample of size n from N (0, ¢°). Also let Yo = Xo — o , so that Y, obeys
N(0, o°). Clearly the distribution of X, — > _r u:/n is identical with that of
V.= Z? Yo /n _

Under our decision rule D the probability of rejecting x, in a single rejection is
equal to

P[X,— Xo> sl] = P[(f’n - Yo + (il m/n— #o) > sfa]

% PP, — Vo> sl = a,

<
>
probability of rejecting any population whose mean is greater than the average
of the remaining n population means is less than « and the probability of reject-
ing any population whose mean is not greater than the average of the remaining
n population means is at least equal to a.

It is now shown that u. for the general decision rule D(¢c;, - - - , ¢,) is not in
general equal to E(D_1 ¢:X (), although we have just shown that this is true for
D.

The existence of py, (which is a function of w;, -+, un, o; 1, -+, ¢, be-
sides a) for which the property of gradation holds for the general decision rule
has already been shown. This implies that

according as wp = .1 u:/n. Thus for D we have the special property that the

(3.3.3) a = P[Z C; X(z’) - XO > Sta(cly M ;Cn)] )
i=1

when E(Xo) = poa(ps, **+, #n,05€¢, +*+,€n, ). It is shown that the as-
sumption we = E(D_1 ¢;:X(y) (which implies that uo, is independent of «)
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leads to a contradiction for the general case. The right-hand side of (3.3.3) can
be written as

(334) P[Zl ¢i X — moa — (Xo — poa) > stalr, -+, c,.)]

But Yo = Xy — po. obeys N(0, ¢°); hence by (3.3.3), (3.3.4), and the definition
of ta(cr, ++ , ca) We get

=

P[E ;Y — Yo > stelcr, - -+ ,c,.)]: a
(3.3.5) .
= P[El i Xy — e — Yo > stalca, -+ ,c,.):l,

where Y1) < --+ < Y, are n order statistics obtained from a sample of size
n from N(0, ¢°). Hence it follows that, when o, is assumed to be independent of
a, the distribution of D 7 ¢;:X () — moa and D1 ¢;Y( must be identical. As a
necessary condition for this we then have

E(Z CiY(D) = E(Z CiX(.') - #o«)

i=1 =1

= E<El C¢X(,)> - Moa .

Hence if we assume that the unknown constant uo, is E(Q_7 ¢:X (), then it will
follow that

(8.3.7) E(Z c.~Y<.>>= 0,

1=1

(3.3.6)

for an arbitrary set of ¢;’s such that ¢; = 0 and Y 1 ¢; = 1. The equation (3.3.7)
does not, however, hold in general and hence we arrive at the conclusion that
Moo is not in general equal to E(D_1 ¢.X (). We can, however, easily derive the
value of wy, for D(cy, -+, c.) When gy = pp = -+ = u,. It can be easily
shown (cf. [13], p. 70) that in such a situation we, must also be equal to p, .

4. Selection of an optimum rule.

4.1. In this section we shall assume that the number of degrees of freedom
(k — 1)(n + 1) of s (cf. Section 1) is so large that ¢ may be considered to be
known. Under this restriction the rule D(c;, - - - , ¢,) as described in Section 2.1
requires the obvious modification that s should be replaced throughout by the
population standard deviation o.

It has been shown that the class € of decision rules satisfies the fundamental
requirement, i.e., the least upper bound of the probability of rejecting the popula-
tion having the largest mean from the selected group is ¢ (0 < a < 1), what-
ever may be the means of n + 1 given normal populations. If among the n 4 1
population means all means except one are equal, then obviously it would be
desirable to select that rule from the class € which
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(i) maximizes the probability of retaining in the selected group the population
with the unequal mean if this is larger than the common mean of the other n
populations; and

(ii) maximizes the probability of not retaining the population with the un-
.equal mean if this is smaller than the mean of the other n populations.

In case (i) the population with the largest mean will be designated as the
“best” population, and in case (ii) the population with the smallest mean will be
called the “worst” population. Thus if X4y < --- < X, are assumed to have
come from N(0, ¢*) and X, from N (3, ¢°), then our desirable rule should ensure
largest probability (i) for retaining z, in this selected group if 0 < § < «, or,
(ii) for rejecting x, from the group if — » < & < 0. From what we have observed
in Section 3.2 it is clear that the above rule will be optimum when Xy < +++ <
X () are assumed to arise from N(u, ¢°) and X, from N(u + 8, ¢°), — < u
<o,

We shall now show that among the class € of decision rules the rule D maxi-
mizes (approximately) the probability of retaining the “best” population in the
selected group. In an exactly analogous way it can be shown that D maximizes
also the probability of rejecting the ‘“worst” population from the group. To
derive this result we shall first prove the following:

LeEmMMa 4.1.1. Let Yoy < +++ < Y(n) be n order statistics from N(0, 1). Then
2 Yo/n = 20 Yi/n has minimum variance among all > v c;Y s such that

{‘ C; = 1.

Proor. We have

(4.11) Var (Z c,-Ym) =22 ccivij,

T=1 t=1 j=1
where v;; denotes the covariance between Y(; and Y ;. Let the variance-co-
variance matrix of Yy and Y;, (=1, :--,n;5 =1, ---, n) be denoted by
Z(n X n)

To minimize (4.1.1) subject to the condition

(412). Se=1,

1=l

we get the following n equations
(4.1.3) E CiVi; = )\’ 1= 1’ cee,m,
j=1

where 2 is used as Lagrangian multiplier. In matrix notation equations (4.1.3)
can be written as

(4.1.3a) Zc = A,

wherec’(1 X n) and 1'(1 X =) denote the row vectors (c;, --- , ¢,) and

(17 1’ e ’1)
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respectively. Since 2 is nonsingular, we get from (4.1.3a)

(4.14) c =2AZ71.

But it is known ([7], [8]) that

(4.1.5) Z; vy = 1.
j—

Hence =1 = 1; this implies
(4.1.6) = =1

By (4.1.2), (4.14), and (4.1.6) it follows that ¢; = 1/n,2 =1, -+ , m.

This completes the proof of the lemma.

The probability of retaining z, arising from the “best’” population when
D(ci, -+, cs) is followed will clearly be given by

n! 2 2 N 2 |
(417) @W.f -;- fexp l:—(xo - 5) /20’ - ;x(o/%]gdx(o,

where

—o <y < 0 KTy < ®©
n

B = Zcix(,) —$o<o’t¢(c1,--- ,c,.)
=1

- < xp < ®

Our object is to show that the expression (4.1.7) is (approximately) maximum
for D. The arguments given in [13], pp. 71-84 and [14] suggest that

n
uley, ++ ,0) = .ZIC‘Y(") - Y,,
=

where the ¢/’s, ¥ (5’s and Y, have the same meaning as in Section 1, may be as-
sumed to be normally distributed for all practical purposes whatever may be the
value of n. Let the (approximate) normal distribution of u(c, -- -, ¢.) be de-
noted by N(£. , o2). Henceforth we shall consider this distribution to be exactly
normal and hence the result derived below is correct only approximately. For
the special case when all ¢;’s are equal, ie., ¢; = 1/n,¢ = 1, --- | n, we shall
write @ for u(1/n, -+, 1/n) and N, &) for the (exact) distribution of . By
Lemma 4.1.1 we know that & is the minimum among all ¢, , where ZI‘ c; = 1.

In the given situation Y 1 ¢;X(; — Xo + & will have the (approximate)
normal distribution N (& , o2), where mean &, and variance o7 are independent of
8. Hence

c”)=2fciX(o—Xo+5—'fc

Oc

(4.1.8) v(cl y "t

will have standard normal distribution N (0, 1).
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Hence the expression in (4.1.7) can be written as

[ota(er,e -« cp)—Ectd]/oc 22
[ e """ dv.

(4.1.9) (2r)V2

'— 00

Also from the definition of ¢,(ci, - -+ , ¢,) (cf. Section 1) it is now evident that

]

(4.1.10) 2r) V2 f My = g
[otg(cy, e, cn)—Ecl/oc
From (4.1.10) it follows that
(4.1.11) clalr, * ) — b _ ole — ¥
o Oc o -

From (4.1.9) it is easily seen that the probability of retaining z, in the selected
group under the present situation is an increasing function of —a result which
is a particular case of Corollary 3.1.2. Now for any arbitrary § > 0 the term
in (4.1.9) will be maximum (when the ¢;’s are varied subject to the conditions
¢ =0, 21 ¢ = 1) when

(4.1.12) a'ta(CI, .o ,cn) — &+ 6 — o'ta(cl’ e ,C,.) — & 4 _‘Z

Oc Oc¢ ¢

is maximum. But ¢. = & (for all ¢,’s subject to the above restrictions) implies
that §/¢ = 6/0, for any 6 > 0. Hence by (4.1.11) and (4.1.12) it follows that
(4.1.12) is maximum for D. Thus the rule D may be taken as the optimum rule.

It is interesting to note the close similarity of this optimum rule D to the usual
(Student’s) ¢-statistic for which a desirable property has been recently derived
by Bahadur [2] while studying two normal populations with a common variance.
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