MULTI-LEVEL CONTINUOUS SAMPLING PLANS!

By GeEraLDp J. IEBERMAN AND HERBERT SOLOMON

Stanford University and Teachers College, Columbia Universily

1. Summary and introduction. In 1943 Dodge [1] published a sampling
inspection plan for a continuous production line. He assumed the production
process to be in statistical control and also assumed the items were classified,
after measurement, as ‘“‘defective’” or ‘‘non-defective”. Dodge derived the
Average Outgoing Quality (AOQ) function for his plan, obtained the Average
Outgoing Quality Limit (AOQL), and provided a graphical procedure for
choosing the parameters of the plan which guarantee a specified AOQL. Wald
and Wolfowitz [2], in 1945, discussed a sampling inspection plan for continuous
production which insures a prescribed limit on the outgoing quality even when
production is not in statistical control. However, they demonstrate an aware-
ness of the penalty involved in accomplishing this end and discuss other desirable
features an optimal plan should enjoy, namely, a minimum amount of inspection
to reduce inspection costs, and protection to insure what they term ‘‘local
stability”, i.e., the ability to detect quickly “too many long sequences’ of poor
quality. Dodge in his paper also discusses minimum inspection and an idea
similar to “local stability” which he calls “protection against spotty quality”.

An inconvenient feature of both plans is the abrupt change between partial
inspection and 100 % inspection. This can lead to hardships in personnel assign-
ments in the administration of an inspection program. For example, in an item
such as aircraft engines, a smoother transition to 100 % inspection is needed.
Both plans also tend to produce a form of tightened inspection when the process
average may not warrant it. In a later paper [3] Dodge considers two modifica-
tions of his plan which delay the beginning of 100 % inspection and also add
some insurance for local stability. He derived the AOQ function for each of the
two plans.

The primary purpose of this paper is to consider an extension of Dodge’s
first plan which (a) allows for smoother transition between sampling inspection
and 100% inspection, (b) requires 100% inspection only when the quality
submitted is quite inferior, and (c) allows for a minimum amount of inspection
when quality is definitely good. This aim is accomplished by the introduction of
a multi-level sampling plan which specifically allows for any number of sampling
levels subject to the provision that transitions can only occur between adjacent
levels. This inspection plan will be recognized as a random walk model with
reflecting barriers. The first Dodge plan is easily recognized as a special case
containing only one sampling level.

Received September 21, 1954, revised May 16, 1955.
1 Done under Office of Naval Research sponsorship, Contract N6onr-25126; reproduc-
tion in whole or in part permitted for any U. S. Government purpose.
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The AOQ function for the plan is derived and contours of constant AOQL
are developed for a two-level and an infinite-level plan. These are added to the
contours of constant AOQL for Dodge’s single-level plan to present a picture in
Figs. 1, 2 and 3 reflecting the relationship between a fixed AOQL contour and
the number of sampling levels used in the plan. In addition an approximation
procedure is presented for determining contours of constant AOQL when the
number of sampling levels lies between three and infinity.

For a desired AOQL and a given process average, criteria for selecting a specific
multi-level plan are discussed.

2. The Multi-Level Inspection Plan (MLP). The plan proposed in this paper
is as follows: ’

0) At the outset inspect 100 percent of the units consecutively as produced
and continue such inspection until 7 units in succession are found clear of defects.

1) When 7 units in succession are found clear of defects, discontinue 100 per
cent inspection and inspect only a fraction f of the units (i.e., one out of every
1/f where 1/f is an integer). If the next ¢ inspected units are non-defective,
proceed to the next level; if a defective occurs, revert immediately to 100 per
cent inspection.

2) When at rate f, 7 inspected units are found clear of defects, discontinue
sampling at rate f and proceed to sampling at rate f>. If the next ¢ inspected
units are non-defective, proceed to the next level; if a defective occurs, revert
immediately to sampling at rate f.

3) When at rate, f°, ¢ inspected units are found clear of defects, discontinue
sampling at rate f* and proceed to sampling at rate f°. If the next 7 inspected
units are non-defective, proceed to the next level; if a defective occurs, revert
immediately to sampling at rate >

kE — 1) When at rate f*°%, ¢ inspected units are found clear of defects, discon-
tinue sampling at rate f*~* and proceed to sampling at rate f*~". If the next 4
inspected units are non-defective, proceed to the next level; if a defective oc-
curs, revert immediately to sampling at rate f*.

k) When at rate of f*7, ¢ inspected units are found clear of defects, discon-
tinue sampling at rate f*' and proceed to sampling at rate f*. If a defective
occurs, revert immediately to sampling at rate f*~, otherwise, continue sampling
at rate f%.

Whenever sampling is in operation, one item should be selected at random
from each segment of 1/f(j = 0, 1, 2, - -+, k) production items. During both
sampling inspection and 100 per cent inspection all defective items found should
cither be corrected or replaced with good items.

This plan will be called the Multi-Level Continuous Inspection Plan (MLP).
For It = 1, it reduces to the first Dodge Plan. The MLP plan is one of a general
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class of multi-level plans which have the property that provision is made for
smaller sampling rates when quality is good. It was specifically chosen because
it made mathematical and computational analysis tractable and still main-
tained all the fundamental ideas of multi-level sampling plans. In fact, results
for more general type multi-level plans are given in Sections 3 and 4.

3. The AOQ function for MLP. Suppose the inspection plan is generalized so
that at the 7 sampling level ( Jj=0,1,2, ---, k) there is a sampling rate f; and
1; non-defectives must occur to proceed to rate f,;,1; fo = 1 (100 per cent in-
spection), 7, is infinite. While on 100 per cent inspection %, successive units
must be non-defective before proceeding to the first sampling level. In MLP,
fi=f;andi; = % = %, j # k. The AOQ function for this more general inspec-
tion plan can be derived without any more complexity than the AOQ for MLP
and this will now be done. It will be assumed, of course, that the production
process is in control, i.e., qualities of “): items are mutually independent bino-
mial random variables with constant y:..imeter p.

Let a “unit” be a group of f;'(j = 0, 1, - - -, k) successive production items
from which one is to be chosen at random for inspection. After the inspection
of any item the size of the unit from which the next item is to be chosen for
inspection is determined by past history according to the given rule. Suppose
we represent the result of the m™ inspection by the random variable x,, where
ZTn 1s zero if the inspected item is non-defective and is one if it is defective.
Then a sequence (z;, 22, -+, Tn, -+ ) represents results on successive in-
spection trials and can be considered a point in sample space. A particular
sampling plan attaches an integer from the set 5, fi', fz*, - -+, fi to each co-
ordinate (r,) of the sample point. Which integer gets attached to a particular
2. depends on z;, @2, -+, 2,_1. The integer attached to z, is the number of
production items in the unit from which a member is inspected with result z,, .

If f7} is the integer attached to z,, in the sequence (z;, Tz, - -+, Zp, -+ )
then the reciprocal of the average fraction inspected for that sequence is

(1) lim LY g

n—-o N m=1

provided the limit exists. Equation (1) can be written as

k —_—l (_n)
o) lim ijl%-

n—0 )==0

where ¢$" is the number of times that sampling from a sequence of individual

production items of length f;' occurs in the first n trials. Now, define the re-
ciprocal of the average fraction inspected, F, as

.
3) =2 5P;
j=0
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where P; is the probability that, for a “randomly chosen’ m, x,, is the result of
inspection of an item selected from a unit of size f7.

If it can be shown that lim,.. ¢gi®/n = P; almost everywhere equations (1)
and (3) become identical. Thus, the average fraction inspected can be represented
in terms of the steady state probabilities. In order to prove these results, it is
useful to relate this process to a Markov chain.

Consider a sequence of trials. At anytime m, (after the m™ observation) the
system is in state

Ev(7)=07 1,2,"',io,io'i"l,"',7:o+1:1,l'0+7:1+1,"',io

+hut b, b+ +e+1, ot uat o Fua+ 1)

Ey = state where the m* trial resulted in beginning 100 per cent
inspection. It signifies a defective item observed while sam-
pling at rate f1 or during 100 per cent inspection.

L, = state where the (m — 1) trial resulted in beginning 100
per cent inspection and where the m* trial resulted in a
non-defective. -

E, = state where the (m — 2)d trial resulted in beginning 100
per cent inspection and where the (m — 1)** and m* trial

- resulted in non-defectives.

E,, = state where the (m — 17,)t" trial resulted in beginning 100
per cent inspection and where the next 7y trials resulted in
non-defectives. This means that sampling at rate fi is to

begin.

By = state where the (m — 1)*! trial resulted in allowing sampling
at rate f; to begin and where the m*" trial resulted in a non-
defective.

By = state wheré the (m — 2)d trial resulted in allowing sampling

at rate fi to begin and where the next two trials resulted in
non-defectives.

.....................................................

Eigriyt-orin_g1 = state where the (m — 1) trial resulted in allowing sampling
at rate fr to begin or sampling at rate f. is in operation,
and where the mt" trial resulted in a non-defective.



690 GERALD J. LIEBERMAN AND HERBERT SOLOMON

The matrix of transition probabilities is given by

Dro =D forr =0,1,---,%+ 4 —1
Drig = P forr=dg+u,b+u+1,---,0+u+ti—1
Driio+is = P forr=do+a+d, -, o+ u+i+u—1
DPriig+ir+---tir_y = P forr = 2.0 + 1,.1 + oo + ik»—»l + 1

Dre=q=1—1p forr=5s—1, s=1,2,---,d%0+4+ - +0.+1

Pigtir+-+ip1+ld0+ir+- - +ip_+1 = 4
all other p,, = 0.

A result’ of a theorem of Chung [5] indicates that this type of Markov chain
has the property that

lim.. g5 ™ /n exists and is equal to a unique P

almost everywhere, where gi ™ is the number of items in state B, in the first n
trials and P} is the “steady state” probability that for a “randomly chosen”
m, T is in state E, . Since ¢i™ is a finite sum of ¢gf™ and P; is a finite sum of
P¥ , we get limp.w im0 f7 gi™” /n exists almost everywhere and lim,., ¢i™/n =
P; almost everywhere. Furthermore, since the process is an irreducible, aperi-
odic, finite Markov chain, the limiting stationary probabilities are independent
of the initial probabilities. This implies that the AOQ does not depend on which
sampling rate is used initially, e.g., the process can start at sampling rate f;,
7#0.

In order to calculate the values of P;,7 = 0, 1, - -+, k, it is necessary to in-
troduce some definitions. P; has already been defined as the probability that,
for a “randomly chosen” m, &, is the result of a choice from a unit of size f;".
Let a prime attached to the Pj;s denote the probability that for a “randomly
chosen” m, z,, is the result of a choice from a unit of size f;*, and zn_y = 0
while sampling from a unit of size f7; or Z,—; = 1 while sampling from a unit
of size fif1,7 = 1,2, ---, k — 1. Pg is the probability that for a “randomly
chosen” m, z.,, is the result of a choice from a unit of size fo* = 1 and z,_; = 1
while sampling at rate fo or fi. Pi is the probability that for a “ran-
domly chosen” m, z.,, is the result of a choice from a unit of size fi* and z,,_; =
0 while sampling from a unit of size fi’y . In other words, P; denotes the prob-
ability of beginning sampling at level j.

2 The authors are indebted to Professor Samuel Karlin for pointing out the applicability
of Chung’s paper.
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Then we may write

’

Py="Pilp+ap+qp+ -+ ¢°7p]

) + Pilp+ pg + ¢'p + -+ + ¢
Py = Pl — ¢ + Pill — ¢"]

Po=Pil+q+q + - +¢"7]

: n- 5L

Pi=Pg®+Pilp+qp+ -+ ¢*'pl

©) LT Pt el
P1 = Pog" + Po[1 — ¢
Pr=Pll+q+¢+ - - +¢"
7 , _ il
(7) P, = P, [1 q :|
p
In a similar manner we get
(8) Py = Pig" + Pill — ¢™]
’ 1 -_ qi2
9 o5
©) =P
(10) Pis = Prsq™* + Pr4l — q""“]
k-2
(11) Pes = Pios [}___q__]
p
12) Py = Piog™? 4+ Py
k-1
(13) Pis = Pin [1__2_]
p
(14) Pl:: —_— P;_lqik—l
’ ‘ P’
(15) Pk=Pk[1+q+q2+...+...]=;k
Also
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Solving equations (4)—-(15) for Py we then find Py, Py, - - -,

multiple of P; , namely

P, since each is a

1

- 1 -1
Po == qio E P1 = D
Tl q'q"
=% .2 p
PT1-¢"'D T a=¢y0—¢%) D
Py, = q“qiz i qikﬁz - . —1—
=g~ g9 (= ¢*) D
Pk = - q q . q”‘—l - . l
I —g¢yd—g% - (1 —g%Y) D
and
1 _ ’ q—
D - Po p .
The AOQ function can be written as
2o
(16) 20Q = 0 — 1) = p 2T
P;
%(7)
=

Substituting all the values we get

10 %1

1_ L) (jl‘ _ ) 7°q
<f1 1> (1 —) P& o ea=m
1 ¢°q" - ¢
+ ot <_ — 1> _ - —
(16a) AOQ = P o fe 1 (1 —quoql)l(l — ¢ - (T =¢g*|
TiT= ¢ RO -d)
el g
+ +fk (1 —_ qlo)(l — qll) e (1 — qik—l)

Now consider MLP, ie., f; = f’; ;

)L ()2
(f l)l—q”L(f'2 ! 1 —¢

then

(17) AOQ =pH

Z(];ék)yzkz °°1j=0y 172y"'7

141

=g

k,
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Let z = (1/1)(¢/1 — ¢"), then

or
o f1=Z (= fz> - (fz)"])l
(17b) AOQ—pz{1 — <1——fz T )

4. Monotonicity of the AOQ and the AOQL.? It is intuitively apparent that
in MLP, the average fraction inspected (AFI), for a fixed process average,
should decrease as k increases or equivalently that the AOQ, for a fixed process
average increase since AOQ = p(1 — F) where F is the AFI. It is also apparent

that this result holds more generally than for MLP.
Let us return to the general model of Section 3. A particular sampling plan

attaches an integer from the sequence 1, fi', fz, -, fi'(1 < fi' < fiy) to
each member of a given sample point or sequence, (z1, @2, - -+ ). If we can show

that for every point in sample space when M is sufficiently large, > mey f7. for
the k level plan is less than ) m; f7 for the k + 1 level plan, then we will have
shown that F~' increases monotonely with & in the above sense.

But look at the sequences of f,’s for a given (z1, 22, -+ )inthe kand k + 1
level plans. The second is the same as the first until the first time f;" appears
i times in succession. Then at the next step, fi' changes to fit; in the second
sequence. As soon as a defective is observed (r, = 1) for the first subsequent
time, instead of fi; appearing (as in the first sequence), we use f5" in the second,
etc. The important conclusion is that at every step the f;* in the second se-
quence is greater than or equal that of the first sequence and eventually (with
probability 1) some strictly greater relationship will appear since the proba-
bility of sampling at rate f.,; is greater than zero. Moreover, the AOQL must
then monotonically increase with increasing k, and the minimum AFI mono-
tonically decrease with increasing k.

5. Contours of constant AOQL for fixed k.* For any fixed k, it is possible to
get AOQL contours paralleling those given by Dodge for £ = 1. However,
getting the AOQL as an explicit function of %, f, and 7, in order to obtain contours
of constant AOQL appears mathematically intractable. Moreover, the use of
computational methods is tedious. Even for k = 2, it is expeditious to use an
electronic digital computer to obtain contours of constant AOQL. Nevertheless,
it is possible to obtain contours of constant AOQL for k infinite and we now

3 The authors are indebted to the referee for pointing out this proof for the general
Multi-Level Plan. The authors, in the original manuseript, only proved monotonicity for
the MLP plan.

4 The authors’ conjecture that MLP guarantees an AOQL (different from the one pre-
sented in this paper) whether or not the process is in a state of statistical control. The proof
should follow the method presented in [4].
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proceed to derive them. While their use in MLP may not at first appear realistic,
they will, together with Dodge’s contours, at least provide some guides and
insight for k = 2, 3, 4, .. ..

6. AOQL contours for an infinite number of sampling levels. Refer to (17)
and let k approach infinity. First assume z < 1, then certainly (fz) < 1. Thus for
infinite & we get

z
18) a0q =50 - [ 2],
Now take z > 1, then for infinite k&
(19) AOQ = p.

Now z > 1 is equivalent to p < 1 — (f/1 + f)"*. Thus when p < 1 —
(f/1 + H)'* the derivative of AOQ with respect to p is positive, in fact it is al-
ways 1. If the derivative of AOQ with respect top for p = 1 — (f/1 + f)*
is always negative, then the AOQL must occur when p = 1 — (f/1 + f)'/* since
the AOQ is a continuous function in this range. Let us look at d/dp(AOQ) for
p 21— (f/1 + f)' or equivalently z < 1. For k infinite,

_1—J[ pa-p" 7.
s<taoq =R [PGR P

then

d _(1-7]
ap 4OV ( 7 )
'{[1 —2(1 = P — p)* — pill — p)* — p(1 — )21 — p)"”l]}

- 20~ )T -

Since (1 — f)/f and the denominator inside the braces are always positive we
turn our attention to the numerator inside the braces. This reduces to

(21) ¢ el = 2¢") — dp}

where the terms in the braces are of interest since ¢" is always positive. Now
the range of interest for p can be writtenas p = 1 — e(f/1 + f)"* where e lies
between one and zero. Substituting we get

o [y ()] [ ()]

(L]

It can now be demonstrated that the maximum value of the first term of (22a)
is less than 7 which shows.the derivative is always negative. The greatest value
of e(f/1 + N is () since f = L(1/f is integral); the greatest value

(20)
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of (1 — f(2¢ — 1))/ (1 + f) is one, thus the first term cannot exceed
®" (1 + ), but

@A+ <4
since this leads to
(1+1/)°<3

and (1 4+ 1/7)' < e = 2.71828. . . . Moreover, since the derivative of AOQ
with respect to p is zero when p = 1, the AOQ function for an infinite number
of levels may be sketched as follows:

A0Q

Thus the AOQL occurs at p = 1 — (f/(1 + £))"* and is also equal to that
value. This yields the explicit relationship

. _ (1 — AOQL)’
(23) f =1 = aoqQn©

It is now quite easy to plot contours of constant AOQL for an infinite number
of levels and this has been done in Fig. 1 which also contains the same contours
for £ = 1. For k = 1, f represents the sampling rate; for k greater than one, f
represents the initial sampling rate.

7. AOQL contours for MLP when k = 2. Putting £k = 2 in (17b) we get

_ 2+ 201 +f)1
(24) A0Q = p(1 —f){—l—_——i-_z——}-_zTJ or

' [ TP f+ q‘
(24a) AOQ = pq (1 f) {fz — qi(2f2 — D+ Fa—fF ﬂ)}
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Taking the derivative of AOQ with respect to p and setting it equal to zero we
get after some straightforward manipulation

¢ =+ U+ A - D - B+ 9) + 2f]
(25) + ¢l + '] + ¢AE@ + 2) — 2 + o[- 24
+eff A+l —=0

We now desire to obtain the sixteen specified contours of constant AOQL for
k = 2 already obtained by Dodge for £ = 1 and just obtained in this paper
for k infinite. While (24a) and (25) uniquely determine the specified contours
their expeditious computation requires some planning. Any pair (f, ¢) deter-
mines a unique value of ¢ given by (25). When this value of ¢ and pair (f, 7)
are substituted in (24a), an AOQL is obtained.

However, the problem is to find curves of constant AOQL, e.g., AOQL = .10
(ten per cent). A point (f, 7) on this curve was found as follows. For any given
value of 7, four points [(f, 5) » = 1, 2, 3, 4] were chosen lying between the
k = 1 and infinite k contours for this AOQL. Each of these points yielded an
AOQL value. These points were chosen in such a manner that the desired
AOQL = .10 was included between the smallest and largest of the four AOQL’s.
By an Aitken interpolation the pair (f, ) corresponding to the desired AOQL
value was obtained. Any number of points on the specified contour can be ob-
tained in this manner. We have lightly passed over the tedious job of evaluat-
ing ¢ by (25) and then the AOQL by (24a) for any fixed pair (f, 7). Actually,
an electronic digital computer was employed for these two steps. The contours
of constant AOQL for k£ = 2 were produced in this way and are given in Fig. 2.
Also, some of these are contrasted with contours for ¥ = 1 and k¥ = « in
Fig. 3.

8. Contours of constant AOQL when 2 < k¥ < «. The computation of con-
tours of constant AOQL for k& > 2 soon becomes forbidding if the method for
obtaining contours of constant AOQL for k¥ = 2 is applied. However, it is
interesting and fruitful to explore the kind of interpolation necessary to repro-
duce the & = 2 contours from knowledge of the one sampling level and infinite
sampling level contours. For k = 1 and & infinite we can explicitly write f in
terms of 7 and AOQL, namely

1 — A)n
(26) fl = 0 1 % . A
(1 _A) +<1+'L—1> (1+’ll)‘1——_—A
and
_ =4
@7) fe=i—@a = o

where A is the AOQL and the subscripts on the f’s and #’s refer to the number
of levels used.
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TABLE I
Comparison between exact (fg) and approximate (f4) values of f for l = 2
AOQL i fE fa JE = fa
.10 15 .0906 .0869 .0037
22 .0343 .0339 .0004
27 .0179 .0183 —.0004
29 .0138 .0144 —.0006
.08 15 .1453 .1403 .0050
' 21 .0725 .0696 .0029
28 .0340 .0329 .0011
35 .0170 .0169 .0001
37 .0140 .0140 .0000
.06 18 .1790 1745 .0045
28 .0750 .0717 .0033
34 .0460 .0445 .0015
44 .0212 .0212 .0000
.05 19 .2210 .2196 .0014
32 .0850 .0813 .0037
45 .0355 .0347 .0008
56 .0176 .0179 ~—.0003
.04 18 .3193 .3280 —.0087
32 .1370 .1310 .0060
53 .0431 .0416 .0015
69 .0191 .0191 .0000
.03 38 .1703 .1648 .0055
60 .0670 .0665 .0005
90 .0210 .0209 .0001
.02 55 .1830 1779 .0051
87 .0740 .0702 .0038
130 .0238 .0239 —.0001
.01 110 .1850 .1801 .0049
180 .0690 .0658 .0032
255 .0270 .0259 .0011
.005 225 1799 1749 .0050
350 0740 .0708 .0032
510 .0270 .0316 —.0046

If for fixed ¢ = 71 = 13 = 1, We write
(28) f2 = foll = BV + AIGY,

we get a point (f;, 72) which falls almost exactly on the contour of constant
AOQL for &k = 2. This is demonstrated in Table I. In other words, harmonic
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cube root interpolation is appropriate, that is, for fixed AOQL and ¢, the set
fi, f2, f» is proportional to 1, (2)"*, 0. This was of course discovered by trial
and error but it also presents a reasonable way for obtaining any of the sixteen
specified contours of constant AOQL for any fixed k by using the explicit known
values for & = 1 and £ infinite together with the assumption that f;, fi, f is
proportional to 1, (1/k)"*, 0; or

@ aer[ ()T

.9. Choice of a MLP plan. Assuming that harmonic cube root interpolation is
a satisfactory method for obtaining contours of constant AOQL for any fixed
k, there still remains the task of defining valid and reasonable criteria to be
employed in the selection of a MLP plan; for, given a process average, an in-
finite number of such plans exist which can guarantee the attainment of any
specified AOQL. Contract specifications, administrative considerations, or
psychological grounds can impose a lower bound on the amount of inspection
or an upper bound on the number of sampling levels and thus curtail the total
number of possible plans. A lower bound on the amount of inspection may also
be required to quickly detect the malfunctioning of the production process.
Also, 1t is evident from Figs. 1, 2, and 3 that Dodge in his single level plan con-
siders f > 1/2 and f < 1/100 as unrealistic, and the authors in MLP consider
the same region unrealistic for initial sampling rates and thus, large groups of
plans are ignored.

In addition there are cost considerations which our continuous inspection
scheme must consider and these will also influence the choice of plans. We will
now discuss two types of cost criteria and their effect on the choice of a MLP
plan. These criteria are“(a) minimum AFI; and‘/(b) local stability which we
specifically define as maintained as long as
(30) Pldy > NA} £ o
where dy is the number of defects remaining in a sequence of N items (N large)
which have gone through the inspection process, A is the desired AOQL, and
a is the tolerated risk. This definition of local stability is a quantification of
the notion expressed in [2]. While only the single sampling level and the infinite
sampling plans will be explicitly analyzed, some implications will remain for
any MLP plan.

We now turn to the AFI functions for £ = 1 and % infinite. For simplifica-
tion write AFI = F and we get for k = 1

_ h .
A+ Q=0 ="
where f, is defined by (26). Thus

(=5)
F1= l_p

(=) +(+3) oo (c2a)

(31) F,

(32)
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For £ infinite, we get
1 - fw[ a-p- ]
1- — |, forp > A
(33) F, = . Li=20-p% P
0, forp £ A,
where f, is defined by (27). Thus

(i=5) -
S

LO, forp = A.

When the process average, p, is less than or equal to the desired AOQL, the
question of minimum AFTI is easily resolved in favor of the infinite sampling
level scheme. On the other hand, when p exceeds the AOQL, it is evident from
(32) and (34) that F; can be made smaller than F,, within the ranges of #; and
1o dictated by a specific choice of 4. Table II gives some numerical illustra-
tions.

forp> A

TABLE II

Minimum values of Fy and F, for selected values of process average
and AOQL (p > 4)

A 4 P T N Jo Fy F,
.10 .15 16 13 .033 .34 .33 .69
.10 .20 7 11 .16 .43 .50 .88
.02 .03 97 68 .026 .33 .33 .67
.02 .04 47 60 .13 .42 .50 .86
.005 .008 330 269 .041 .35 .38 .72
.0005 .0008 3331 2694 .040 .35 .38 72

Let us now examine the single sampling level and infinite sampling level
plans for local stability. For a sequence of N items (N large, p(1 — F) small),
dy can be approximated by a Poisson distribution with mean Np(1 — F). Thus
from (30) and the normal approximation to the Poisson we get

NA — Np(1 — F)

5 WP — B

2z K,

where K, is the (1 — «)th percentile of the normal distribution with zero mean
and unit variance. Solving the equality in (35) for p(1 — F) = AOQ we find

_ 2NA + K% + (4NAK? + K&}
B 2N

(36) p(l — F)
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but since p(1 — I') = 4, the positive square root must be discarded. The solu-
tion to the inequality in (35) is

2 4 2
37) p(1 = F) §A+Ka [Ka AK,

N " ?47\7—2+—1V‘:| = G4, N, a).

For I = 1, we obtain

R (N (= () 8 (M

When p £ C(4, N, a), (37) is satisfied for all values of 4, and thus local sta-
bility is guaranteed by all plans for & = 1. For C(4, N, &) < p < A there exists
a value 77, given p and A, such that for all 4, < 47 local stability is maintained.

When p > A, then there exists a value 41, given p and 4, such that for all
9 = 41" local stability is maintained. Thus, given any values for p and 4, it
is always possible to find plans which yield local stability when k¥ = 1; and
when quality is exceptionally good all single sampling level plans have this
property. This is not surprising since the Dodge plan represents the tightest
inspection plan of all MLP plans.

For the infinite sampling level plan, we obtain

p(l — F,) =p whenp < 4

(39) AOQ. = 1—pV=[1—20 — A)=
Pl — Fo) p(l = A) [1 =21 = p)*-

] for p = A.

When p £ C(4, N, a), (37) is satisfied for all values of 7, and local stability is
guaranteed for all infinite sampling level plans. For A > p > C(4, N, a), (37)
is never satisfied and local stability is never maintained. This is also true for
p = A. When p > A, there exists a value 7% , given p and 4, such that for all
iw = 1w local stability is maintained. Thus, as in the Dodge plan, when quality
is exceptionally good, all infinite sampling level plans have the desired prop-
erty. On the other hand, when quality is good but hovers just short of the
AOQL, local stability cannot be maintained. However, when quality exceeds
the desired AOQL, it is possible to find some infinite sampling level plans which
will maintain local stability.

When quality is exceptionally good, ie., p £ C(4, N, «), then the infinite
sampling level plan guarantees local stability and has minimum AFI. It also
seems plausible that if a choice between the Dodge plan and, say, k = 3 is de-
sired, then the decision should be in favor of k¥ = 3 since it will guarantee local
stability and a smaller minimum AFI. However, if C(4, N, ) < p < A, the
choice between the Dodge plan and infinite % is not easily resolved for while
the latter has minimum AFT, it does not have local stability. If quality is poor,
p > 4, then the Dodge plan is to be preferred.



704 GERALD J. LIEBERMAN AND HERBERT SOLOMON

REFERENCES

[1]1 H. F. Dovce, “A sampling inspection plan for continuous production,” Ann. Math.
Stat., Vol. 14 (1943), pp. 264-279.

[2]1 A. WaLp anp J. WoLFowiTz, ‘““‘Sampling inspection plans for continuous production
which insure a prescribed limit on the outgoing quality,” Ann. Math. Stat.,
Vol. 16 (1945), pp. 30-49.

[3] H. F. Dobce anp M. N. Torrey, ‘‘Additional continuous sampling inspection plans,”’
Industrial Quality Control, Vol. 7 (1951), No. 5, pp. 7-12.

[4] G. J. LIEBERMAN, ‘A note on Dodge’s continuous inspection plan,’”’ Ann. Math. Stat.,
Vol. 24 (1953), pp. 480—484.

(5] K. L. Cuuxa, “Contributions to the theory of Markov chains,” Trans. Amer. Math.
Soc., Vol. 77 (1954), pp. 397-419.



