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Summary. Forz = 1,2, - - - , n, let N, independent trials be made of an event
with probability p;, and suppose that the probabilities p; are known to satisfy

the inequalities p; = p2 = -+ = p. . Let a; denote the number of successes in
the 4-th trial, and p; the ratio a;/N:¢ = 1, 2, --+, n). Then the maximum
likelihood estimates P, « -+, P. of the numbers p,, -+, p, may be found in

the following way. If pf = ps = -+ = ps = 0, thenp; = p¥ ,i=1,2, -+ ,n.
If pf < phy for some k(k = 1,2, ---, n — 1), then fi = P41 ; the ratios
pi = a/Ni and phy1 = @ry1/Niys are then replaced in the sequence pf,
p: , -+, px by the single ratio (az + @x41) / (Nx + Niqa), obtaining an ordered
set of only n — 1 ratios. This procedure is repeated until an ordered set of ratios
is obtained which are monotone non-increasing. Then for each 7, p; is equal to
that one of the final set of ratios to which the original ratio a;/N; contributed.
It is seen that this method of calculating the %;, - - - , 7, depends on a grouping
of observations which might very well appeal to an investigator on purely
intuitive grounds. It seems of interest to note that it yields the maximum likeli-
hood estimates of the desired probabilities.

Particular examples of this situation are found in bio-assay [3] and in the
proximity fuze problem discussed by M. Friedman ([1], Chapter 11).

The last section is devoted to a consistency property of the maximum likelihood
estimators.

1. Introduction. In ordinary sampling one observes directly values of a random
variable. There are, however, certain investigations, of which examples are to be
found in a number of different fields, in which the result of each observation is
not a sample value of the random variable being tested, but only a number,
together with the information that the sample value is less than, or is greater
than, that number. Bio-assay furnishes an example ([3]; for further references
see [3], p. 416; [1], p. 352). Certain other examples occurring in the biological
sciences have been suggested to the authors. Still another situation of this kind
is mentioned by M. Friedman ([1], Chapter 11). Given a population of proximity
fuzes, one is interested in the distribution of the random variable t, maximum
distance from target at which a proximity fuze will operate. The result of a test
of an individual proximity fuze is the distance of its nearest approach to the
target and the information that it did or did not operate (we assume that the
proximity fuze will not operate before reaching its point of closest approach to
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the target. We do not know whether or not this is in fact true of any actual
proximity fuze; cf. [1], Chapter 11). The result of such an observation is there-
fore not a sample value of the random variable, t, but rather a distance, ¢, and
the information that the sample value of t corresponding to the particular prox-
imity fuze is less than # (if it did not operate) or at least # (if it did operate).

Let F(t) = Pr{t < t}; F(¢) is the distribution function of the random variable
t. Let p(t) = 1 — F() = Pr{t 2 t}; p(t) represents the probability that the
fuze will operate if its minimum distance from the target is ¢. Suppose R fuzes
are tested, and observed to pass within distances ¢, #;, -+ -, ¢, of the target
(n £ R; several may have the same minimum distance from target); for con-
venience suppose the {¢;}1 are arranged in increasing order. The R tests may be
regarded as a set of R independent trials of events having probabilities
p: = pt:)E = 1,2, ---, n) of success (those observed at the same minimum
distance from target having the same a priori probability of operating), if the
term “success” is used to signify that the proximity fuze operated. The problem
is to estimate the probabilities {p;}1 from the results of the R trials.

In a typical bio-assay situation, a large number of trials is made at cach pa-
rameter value ¢;(+ = 1, 2, --- | n). In such a situation the ratios, number of
successes divided by number of trials, each determined for a particular pa-
rameter value, will with high probability be in monotone non-increasing order
(assuming & £ £ £ --- = 1,). The “best” estimates of the probabilities are
then these ratios, and if ji(¢) is a non-increasing function assuming these values
at the points {¢;}7 then F(t) = 1 — 5(¢) is an obvious empirical distribution
function. In other cases, such as that discussed above, one might expect a small
number of trials corresponding to each parameter value, so that the average
numbers of successes could not be expected to be in monotone order. It is for
such situations that the maximum likelihood estimators of the probabilities
{p(t:)}1 are determined in this paper. If {$;}1 denotes the set of maximum likeli-
hood estimates, and if {(f) is a monotone non-increasing function such that
pt:) = pi( = 1,2, .-+ n) then F(f) = 1 — H(¢) will be termed an empirical
distribution function.

In bio-assay situations it is often assumed that the random variable in question
(perhaps after an elementary transformation) is normally distributed. Methods
of probit analysis ([1]. [2], [3]) have been developed for use with such an assump-
tion. While it is true that an empirical distribution function may be useful in
determining parameters of a normal distribution under such an assumption,
the primary purpose of this paper is to present estimators of the probabilities
{p(t:)}1 without reference to any assumption as to the distribution of the random
variable being tested. These estimators are derived in section 2. The calculations
required for their computation are extremely simple and rapid. In section 3,
the consistency of the estimators is considered. A theorem is proved which states
that the empirical distribution function, F(t) = 1 — $(¢), converges in proba-
bility to the distribution function F(¢) as the number of tests or trials becomes
infinite in an appropriate way.
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2. Maximum likelihood estimators of the probabilities. Let a; + b, inde-
pendent trials be made corresponding to the same parameter value, or observa-
tion point, ¢; , of which a; are successes (1 = 1, 2, ---, n). If p; = p(t;) denotes
the probability of success in a trial corresponding to the parameter value
t:(t = 1, 2, -+, n), then the a priori probability of the event that, for each
integer 7, 1 £ 7 = n, a specified a; of the trials will result in success is

(2.1 II = H P — p)’

Since p() is non-increasing, the {p:}1 are known to satisfy the relations
(2.2) lzp2p= - 2p.20.

The maximum likelihood estimates of {p;}{ are those numbers, {$;}1, which
maximize the probability II subject to the relations (2.2). (These estimates
also maximize the probability,

Hl (“’ + b ) pi(l — p)",
that for each 7, 1 < ¢ =< n, there will be a; successes among the a; + b; trials
at the observation point ¢;).

In the context of the above discussion the numbers a; and b;(z = 1,2, --- | n)
are non-negative integers. In section 3 they will be so regarded. However, the
discussion of this section requires only that they be non-negative real numbers,
such thata; +b; >0(¢ =1,2, ---, n).

Let B, denote the class of sets of real numbers {p;}1 satisfying the inequalities
(2.2). The problem is to determine a set {f;}1 in B, affording a maximum value
to H
(2.3) Il 530 - ) = max J]p¥a — p)™

=1 {ps)eBn i=l

Lxaima 2.1, There is a mazximizing set {P;}1 .

This follows immediately from the observation that the product is a con-
tinuous function of its arguments p;, P2, * -+, P and hence assumes its maxi-
mum on the closed, bounded set described by inequalities (2.2).

Set

(24) Pl = ai/(a; + b)) =12 - ,n)

TuroreM 2.1. If {p:l1 7s a maximaizing set, and if P > Pra for some k,
1<k £, then pr = Pr > Pro1 = Pigr . Also, pt £ P1, and P = P .

Proor. We prove first that pZ‘ = Pr . The basis of the proof is the observation
that the function p *(1 — p)° increases fox 0 =< p < a/(a + b) and decreases
fora/(a +b) <p = 1. Suppose Px > pt . Choose pi = max (pr , fxs1). Then
PLZPa= o = Pra > Pr 2 Prat 2 00 2 Pa, while

P — ) > PR — B
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This means that ]| is increased by replacing 7 by px (note that max II > 0),
contrary to (2.3). Therefore pi = px. Similarly pry1 = piy. Hence
PE = Pr > Pesr = Prya. The proof of the last statement of the theorem is
similar.

For integers r, s, with 1 < r £ s < n, define

2.5) alr,s) = 2a, B9 =2b,

_ A(r,s) = alr, s)/la(r, 5) + B(r, s)].
THEOREM 2.2. For 1 £ ¢ £ n, we have

P = min max A(r,s) = max min A(r,s)
ISrgd igsgn igsgn 1578t

= min max A(r,s) = max min A(r,s).
17t r<ssn 1<sSn 1<Sr<s
The original proof, based on Theorem 2.1, is omitted. The reader is referred to
the following paper for a simpler proof.

CoROLLARY 2.1. The mazximizing set {P;}1 vs unique. Bach 5;(¢ = 1,2, --- , n)
is determined uniquely by any of the formulas in Theorem 2.2.

Theorem 2.2 gives explicit formulas for the determination of the {f;}, but
these are not recommended for calculation. Theorem 2.1 provides a means of
calculating the maximizing set, {p:}1, as outlined in the summary, which is
very fast even for moderately large n.

The following interesting inequality was mentioned by a referee:

Do @k — p)ak + b)) = 2ok (B — pu)(ax + bi).

Here px and 7 are as defined above, while p;, ps, -+ , P, is any set of numbers
suchthat 1 = p1 2 p2 = +-+ 2 p, = 0. Indeed, one has

S 0 — p)an + be) = 2k B — p)(an + be) + 2o (BF — B)(ax + b),

as was shown by two of the authors, independently, in more general contexts,
subsequent to the submission of the manuscript. These inequalities show that the
numbers P, are, on the average (in an obvious sense), closer to the numbers
pi. respectively than are the numbers D .

3. The consistency of the estimators. Let F(¢) be the distribution function of
the random variable t (see Section 1). The probability that t will assume a value
¢ or greater is given by p(¢f) = 1 — F(¢). The method discussed in Section 2 pro-
vides the maximum likelihood estimates, p;, of p(f) at specified parameter
values, or observation points, (¢ = 1, 2, -+, n). Let #(¢) denote any non-in-
creasing function, 0 < $(f) =< 1, assuming the values p; at the points
t:i =1,2 ---,n), and F(t) 1 — #(t) an empirical distribution function
associated with trials at the observation points £;( = 1, 2, - - - , n). If the points
&, -, t, were to remain fixed and the number of trials at each to increase in-
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definitely, it Would follow from the strong law of large numbers that for
k=12, ,n, pr and Py converge with probability 1 to p; . In the following
theorem, however, neither # nor the points #, ¢, - -+ , £, , nor hence the proba-
bilities px need remain fixed. For a fixed £, , the number of trials made at ¢, need
not become infinite, nor need any at all be made at . We shall have 5(¢) near
p(t) with high probability if only enough trials are made at points near & , even
if only one trial is made at each point.

The following theorem of Kolmogorov (strong law of large numbers) will be
useful in establishing such a result.

Lemma 3.1. (Kolmogorov) Let y; be a sequence of independent random variables
having expected values E(y;) and variances Vi(j = 1, 2, ---). Let € be an arbi-
trary positive number, and M a posttive inieger. Then

13, - Byl }>1-—E[Z e nd

e i=M ]

3.1) Pr { sup

k=M

(4], p. 203).
TaEOREM 3.1. Let & be a continuity point of the distribution function F(t). Let

¢, 1 be arbitrary positive numbers. Let t', t” be chosen so that i’ < to < t” and so
that |[F(t) — F(to)| < ¢/2fort' <t £ t". Then
(3.2) Pr{|F(t) — F(to)] < ¢} > 1 —

provided that at least N trials are made between ¢ and t; and at least N trials are
made between to and t”, where N is chosen so that

1 1 2
(3.3) ,z,,:'v sty <ce n/32.
Proor. We shall prove first that Pr{F(t) > F(t) — ¢} > 1 — 5/2 or
(3.4) Pr{p(t) < plt) + ¢} > 1 — /2

provided that at least NV trials are made between ¢’ and ¢, . It can be shown simi-
larly that Pr{F(t) < F(to) + ¢} > 1 — 5/2, or

3.5) Pr{p(t) < plto) — ¢} > 1 — 9/2,

provided that at least N trials are made between # and t”. Inequality (3.2)
follows from (3.4) and (3.5).

In order to establish (3.4), let t* = # if # is an observation point. If not, let
t* denote the first observation point to the left of # . Since F(t)) = F(¢*), or
B(t) = p(t*), it suffices to prove

(3.6) Pri{pt*) < plta) + ¢} > 1 — 4/2.

Let the observation points be {{;,}(+ = 1,2, -+ ,n) withy £ t, £ -+ £ ..
Let ¢» be the first observation point to the right of ¢'. Let M be the number of
trials at observation points {m, tmi1, -+, & = t* By hypothesis, M = N;
that is, D 1m (a; + b;) = N. Order the trials at observation points tm , byt , ** ¢,
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ts in the order of increasing ¢;, ordering in an arbitrary way those occurring at
the same observation point. Let T1, T:, -+, Ty, Tus1, --+, Tr, where R
is the total number of trials, denote the trials so ordered. Let {y;} denote the
number of successes in the trial T;(j = 1,2, - -+, R) so that y; = 1 with proba-
bility p(¢;) and y; = 0 with probability 1 — p(¢;), where ¢; is the observation
point at which the trial T'; occurs. For j > R, let {y;} be independent random
variables, each assuming the value p({) with probability 1. Set s, = D 51 y;.
By Theorem 2.2,

p(t*) = p(t.) = min max A(r,s).
ISrSu ugssn

Hence

p(t*) = max A(m,s)
ugssgn

(tm is the first observation point to the right of #'). The symbol A (m, s) represents
the average number of successes in trials starting at ¢, and terminating at ¢, .
Hence as s varies (s = u) these ratios form a subsequence of the sequence
si/k(k = M). This implies that

3.7 ¥ = sup si/k.

By Lemma 3.1,

Px{ksgl‘)l [ - ZE(y,)] < %} Pr {f‘g‘ﬁ’, < %}
> 1 ——[Z Vili +4MZZV].

But V; = Var(y;) = p(t)[1 — p{t:)] £ 1, t: being the observation point at
which the trial T'; occurs. Hence by hypothesis (3.3),

i [ F-imEm g - E[ R4 ] 1 -

since M = N. Further, if 1 < j < R, then E(y;) = p(t:) < p(to) + ¢/2;if j > R,
then E(y;) = p(t). Hence

Pr {f‘iﬁ si/k < plte) + ¢} > 1 — 5/2.

Sr 1 :
AR 21 E(YJ)

By (3.7) it then follows that
(3.6) Pr{p(t*) < pt) + ¢} > 1 — n/2.

The proof of Theorem 3.1 is completed as indicated immediately following its
statement.
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