ON THE ESTIMATION OF REGRESSION COEFFICIENTS OF A
VECTOR-VALUED TIME SERIES WITH A STATIONARY
RESIDUAL!

By MURRAY ROSENBLATT?
University of Chicago

1. Summary. Time series which are realizations of a vector-valued stochastic
process of dimension two with a stationary disturbance are considered. Linear
estimates of the regression coefficients of the time series are discussed, in par-
ticular the least-squares or classical estimate and the Markov estimate. The
least-squares estimate is the estimate computed under the assumption that
the components of the disturbance are orthogonal processes and orthogonal
to each other. It is known that the Markov estimate is in general better than
the least-squares estimate. The asymptotic behavior of the covariance matrices
of the least-squares estimate and of the Markov estimate is described. Con-
ditions under which the least-squares estimate is as good asymptotically as
the Markov estimate are obtained, that is, conditions under which the least-
squares estimate is efficient asymptotically in the class of linear unbiased
estimates. The analogues of the results described for vector-valued time
series of dimension greater than two can be seen to hold.

2. Introduction. The presentation of the results of this paper is carried out
for the case of a two-dimensional process because of the greater simplicity
and clarity in exposition. The general n-dimensional case is briefly discussed
in Section 9. Let us consider a fwo-dimensional complex-valued discrete parameter
process, that is, a sequence of stochastic vectors

— (W) _ _ (% 1M,
2.1) ye = <2yt> Tt M (2111:) + <2mt>,
t=”'>_170’1,"')

where my = Ey, 1 the mean value sequence and &, = y, — m, 18 the residual process.
We introduce the covariance sequence (x; denotes the conjugated transpose of x)

Exei@, Eixeok Ts,¢ 197
_ —mY = Erz W1y B 1%s2 t>=<lle.t123,t>
(2.2) By, = m)ye = ma) e <E s 1%y B oksoT, 217s ¢ 22s ¢

= Ts,t

The assumption that the random variables are complex-valued is made for
mathematical convenience. The real-valued case is, of course, the one of greatest
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100 MURRAY ROSENBLATT

statistical interest and is discussed in Section 7 in some detail. Sections 2 and 3
are an extended discussion of the assumptions made in the paper and their
motivation. All the assumptions made in Sections 2 and 3 (except possibly for
that of a real-valued time series) will be held fo in all sections except Section 8.
The residual process x; is said to be stationary in the wide sense if Te,; = 7oz,
and I shall assume that this is the case. Then the covariance sequence has the
representation

23) r = f & dF (),

where F(\) is a matrix-valued function

_ (Fu(\) F 12()\))

(24) FO) = <sz(>\) Fu(\)

that is nondecreasing; that is, AF(\) = 0 (cf. [2]). The functions Fu(\), Fa(\)
are the spectral distribution functions of 1x: , . , respectively, while Fi(\), Fau(\)
are the cross-spectral distribution functions of the two coordinates of x.. We as-
sume that the spectrum is absolutely continuous; that s, that

A
@5) Fo) = [ fiw) du, ij=12,

and that the spectral densities f:j(\) are continuous. The spectral densities fi(N),
i = 1,2, are assumed to be positive. Note that fiz(\) = fa(\). The inequality

(2.6) [fM)* £ fu)fa®)
obviously holds. We shall assume that

2.7 IfM)F < fu(\)fe(h)
for all \.

We shall refer to the set of spectra satisfying this set of conditions as the admis-
sible set of spectra. The equality |fi(A\)[? = fu(A\)fe(2) for all X amounts to a.
linear relationship between the two coordinates w:,qt: of the form
% = 2.;jCis%sj. If the processes ;. are orthogonal processes, the spectral
densities fis(\) = o%/2m, 4 = 1, 2. Such processes are sometimes referred to as
“white noise.” If the processes 12;, 2x; are orthogonal to each other, the cross-
spectral density fi2(A\) = 0.

In Section 7 we shall assume that the process . 18 a real process. This condition
imposes additional resiraints on the spectrum, specifically that

(2°8) an\) = fii(—k)) 1=12

and fis(\) = fu(—N). If the process is real, the admissible class of specira must
satisfy these additional restraints.
Let the regression ;,m;, ¢ = 1, 2, be of the form

D

(2.9) my = 2 i,

v=1
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‘The problem posed is that of estimating the regression coefficients ;¢, from a
time series y1, * -+, y~ . The regression vectors

) "Av)
M
v

PN

are assumed known. We are interested in unbiased estimates that are linear
in the observations ., ¢ = 1,2;¢ = 1, --- | N. The two linear estimates
that we are specifically interested in are the least-squares estimate and the Mar-

kov estimate. Let
i'”.?'l i’!{l
m = M 5 Y = M B i = ]) 2’
<My, Yn

_[m — 1Y
m—<2m>, v (zy> \

Define the vectors ¢ and ¢ by
iC1
i€ = . 5 i = l, 2;
iCp;

and

Also define the matrices

& = (W(l), e, “0(1’,-)),

@ 0
d = .
0 .
The fact that m, is the mean value of y; can be written in vector form as
(2.10) m = Ey = ®c.
The least-squares estimate cr. is the estimate that minimizes the quadratic form

(y —m)(y —m) = (y — &) (y — ®c);

that s, c; = (@®)"'®'y. Note that we are assuming that ®'® is nonsingular. The
estimate ci, is unbiased

2.11) Ec} = @3) By = (%) '®dc = ¢
and the covariance matriz of cr s
E(ct — o)(ci — ¢) = (@) RD@D) .
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The matrix R is the covariance matrix of the vector y. Our assumptions con-
cerning the spectrum of the process z; imply that the matrix R is nonsingular.
The Markov estimate

cx = @R7®)®R™Yy.
It is also unbiased and its covariance matrix
(2.12) E(cy — c)(ch — ¢) = @R™®)™.

The Markov estimate is minimum variance among all linear unbiased estimates:
in the following sense. Consider any unbiased linear estimate ¢c* = My, Ec* =
M®c = c; that is, M® = I. Its covariance matrix

E(c* — ¢)(c* — ¢)) = MRM'.
One can then show that
MRM' z @R™'®)™".

These remarks about the least-squares and Markov estimates are well known.

We shall investigate the asymptotic behavior of the covariance matrices of’
the least-squares and the Markov estimate as N — . Note that the least-
squares estimate is identical with the Markov estimate when the processes.
&, are orthogonal processes and are orthogonal to each other. It is of consider-
able interest to find out when the least-squares estimate is asymptotically as.
good as the Markov estimate, that is, when it is asymptotically efficient in the:
set of linear unbiased estimates. Whenever we use the phrase asymptotic effi-
ciency we mean asymptotic efficiency in the class of linear unbiased estimates.
The least-squares estimate is much easier to compute than the Markov esti-
mate, since it does not require knowledge of the structure of the process z. .
Even if the structure of the process z, is known, the computation of the inverse-
R may be very tedious. We will discuss the question of asymptotic efficiency.
These problems are discussed in [3], [4], and [5] for one-dimensional time series.
New aspects of these problems arise in the multidimensional case that we dis-
cuss 'in this paper. The principal results of the paper are given in Sections 4, 5,
6, and 7.

The discussion is based on what might be called a generalized harmonic
analysis of the regression vectors. In carrying out this analysis we will have to-
impose some conditions on the asymptotic behavior of these vectors. However,
these conditions will be sufficiently broad to allow most of the usual types of
regression sequences. The techniques used are similar to those employed in [5].

3. The regression spectrum. Let @ = D ai|w’ |, © = 1, 2. We

first assume that @’ — « as N — . Some condition of this type is required if
we are to be able to estimate ¢ consistently. We also require that
3.1) lim @y / @ = 1

N->co
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for every fixed h. Let the limits

IRORO)
(32) GMP = lim Z ) A
>0 t= o) Fw’
n>co t=l \/4, Fidy o
)

L,i=12v=1,--- pis;u=1,---,pj,exist for all b = 0. If we set o, =
0 for ¢ < 0, it can be seen that the limits ;;M 0 b > 0, exist and that

(33) ”M(vll) — jiMl(sn'V)~
Let the matrices
(3.4) My = {iiM}(lm‘); v=1 - ,pi,p=1,--- »ypit, i =12
and
<11Mh 12Mh>
M, = .
21Mh 22Mh
The matrices My, h = ---, —1,0,1, .-, form a positive definite sequence;

that is, given any p; + p, vector z and any finite vector a
%‘: a,2'M,_,z0, = 0.
The matrix sequence M} then has the representation
35) M;,=f_:emdM()\), h= oo, —1,0,1, -,
where M(\) 1s a matriz-valued function that is nondecreasing so that AM(\) = 0

for all \. Note that if all the regression vectors are real, we have dM(\) = dM(—N).
It will be convenient at times to write /() in the form

36) ) MO = <11M M) M O\))
' - aM(\) 2MQ) ’

where ;M (\) is a p; X p; matrix. It is clear that
(37 = [ ™ agho), ij=12

The matriz-valued functions M (M), 22M(\) are nondecreasing and 1.M(\) =
21M ()\),. Let

(3.8) My = M(r) — M(—m) =

and
(39) ,';Mo = ,'iM(‘ll') - ;M(—‘lr) = ,'17”, 1= 1.2
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We shall assume that M and 2M are nonsingular. This means that there is no

vector
O
a = : # 0
i0py
such that
D3 (»)
3 w0
v=1 Dy

as N — o, ¢ =12, Thus, vectors »" are asymptotically linearly independent
in the sense described above. Such a condition is required if we are to be able
to estimate the regression coefficients consistently as N — . The conditions
imposed on the regression vectors are sufficiently broad to include the case of
polynomial or trigonometric regression or mixed polynomial and trigonometric
regression.

The singular case in which the regression of one component ym; = 0 and one
wishes to estimate the regression coefficients ic, of the regression of the other
component does not satisfy the conditions imposed on the regression vectors
above. It is, however, of some interest and we shall discuss it in Section 8.

Let the diagonal matriz

Vap

DN = R = .
\/2‘I>1(v'1) 0 2DN

Vi <1DN 0 >

0

»\/2q>l(vpz)

We shall show that the limits of
DyE(c* — ¢)(c¥ — ¢)'Dy = Dy(®®)*DyD5'®' R®Dy'Dy(®®) "Dy

and
DyE(cl — c)(c¥% — ¢)'Dy = Dy(@R™'®) "Dy

exist as N — o and shall obtain expressions for these limits in terms of the
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spectrum of z; and the regfession spectrum (see Sections 4 and 5). It will be
convenient for us to write

Rll R12
(3.10) R = ’
R21 R22

where Ry, Ry are the covariance matrices of 1y, sy respectively, while Ryy = R
18 the cross-covariance madriz of 1y with 2.
Note that the assumptions concerning the regression vectors tmply that

3.11) lim Dy(® $)D¥’ = (‘J(‘)[ L)

which 18 nonsingular.

4. The least-squares estimate.
TueorEM 1. Under the assumptions made tn Section 2 on the spectrum f(\)
of the process x; and the assumptions made in Section 3 on the regression of the

process Y ,
lim Dy E(c¥ — ¢)(c} — ¢) Dy

@1 =2« (1]%—1 ]£—1> [;fll(—k) duM()\) [;rfllz(-—)\) dM Q)
2 [, fu(=N) daM(N) [” fa(=N) daaM(N)

Mt 0
1
x( ! Ml).

In discussing the asymptotic behavior of the covariance matrix of the least-
squares estimate, it will clearly be enough to consider Dy'®R®Dy'. We will
approximate R above and below by positive definite matrices of a simpler form.

Consider the quadratic form

’
2Rz = 12'R1121 - 2ZIR2121 + 12,R1222 + 22R22z,

2 .
where z = <1z> and 12, oz are N-vectors, so as to see how to approximate R
2

conveniently. Clearly

7Rz = f_ ' li2(—=N)[* fu()) dn + f_ 22(—N) fa(\) 12(=X) dr

[T 550 20 dh [ VI )

where 2(\) = D o ze™, i = 1,2. Note that 2/Rz can be written in the
more convenient form

7Rz = f ) 2(=N\) f(\) 2(=X\) dx,

—
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(\) fa)  f(\)
N\ = R A\ = .
“W) (zz()\)> o (fn(k) mm)

Now |f(\)| is nonsingular for all A, since fu(A\)faa(A) > |fie(\)[* for all X

Let
a G Gz C
<f31 b1> ’ <52 bz)
be two positive definite 2 X 2 matrices. They are positive definite if and onlv
if a;,b; = 0Oand a: b; = |ei’, 7 = 1, 2. Moreover,

a1 € a2 C2
=
<51 b1> <52 b2>
if and only if a1 = az, by = by, and (a1 — a2)(by — b)) — i — |° = 0. Now

ful\), f2(\) are positive continuous functions and inequality (2.7) holds. Given
any ¢ > 0, we can find finite trigonometric polynomials

where

g .
4.2) gii(\) = kZ agee™,
=g
g .
(4.3) hi\) = 2 ihwe™,
k=—q

1,7 = 1, 2, satisfying the inequalities
gu() Z fu(y) = hu(r) > 0,
g2(\) Z fa(\) 2 ha(d) > 0,
gu(W)gn() > |guM)),
hu(A)haa(h) > ha(V)[?,
e > (gu®) — fu)(ga®) — f2()) > lgu®) — fuMI,
e > (fuh) = ha@))F) — ha(V)) > [fuh) — bV,
lg:\) — Bai(M)| < ¢
1 = 1,2, for all \. Let
Gij = {ige-1; K, 1 =1, -+, N},
i = {ihar; kU =1, -+, N},

Gn G12 H 1 H 12
G = , H = .
Gn Gn Hy Hay

s

and
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Let
11 >\ 12 x hll x hlz x
y(k)=<g()g()>, h(k)=<() ()>.
9210\) 922()\) h21(>\) hzzO\)
Now
7 Gz = [r 2(—=N)" g\) 2(=\) d\ = 2’ Rz
= [r 2(—=N) f(\) 2(—=\) d\ = 2’ Hz
= [ = h) o= a,
so that
4.4) G=R = H.

Clearly, Dy'®'G®Dy = Dy®'R®Dy' = Dy'®H®Dy'. We shall obtain the

limit of Dy'®G®Dy" as N — oo, This matrix is easier to deal with, since ;;gx—; = 0
if |k — 1| > g. A typical element of the matrix in question is

N q N—k —1 N [ )
T

» 2" ifir 10 » o o D S D i

b ii0t— iPr Z: 4 iPr § iPr
2 A 20 ® TEWY T aw + o i o Vo g’
o= &y Oy = ™ & PN a T &r On

which approaches
; ik s‘iMlgv'") = 27 [ gi(—\) d .'jM(”-M)()\)
as N — o, so that

‘/; gu(—=N\) d M) [ g(—N) d M(\)
lim D¥'® G®Dy' = 2r
N>

[ont=nautt) [ ga(=3) aub)
In like manner, one can show that

[ =0 audt) [ hat=2) duMo)
lim Dy'® HEDy' = 2n| .

N>

[ (=N dad) [ (=2 dwb ()
Making use of the inequality (4.4), on letting ¢ — 0 we see that

[ a0 du)
(4.5) lim Dy'® R®D;' = 2w |

N->oo

[ =0 aart) [ a0 dmd )
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This limiting matrix will be shown to be nonsingular in Section 5. Thus (4.1)
is valid.
6. The Markov estimate.

TuroreM 2. Under the assumptions made in Section 2 on the spectrum f(\)
of the process z; and the assumptions made in Section 3 on the regression of y:,

(5.1) }Vim DyE(ck — ¢)(c% — ¢) Dy

* fa(=N) duM () [T fu(=)N) duM®) B
= or  fu(=Nfa(=N) = [fu(=N} L fu(=Nfa(=N) — [f(—=2)
" Fa(=2) d M) " fu(=2) d M)

T L (= Nfa(=N) = (=D Ls fu(=Nfa(=N) = [fr(=D}

In discussing the Markov estimate it will be enough to consider Dy'®’R™'®Dy".
We shall again approximate R above and below by positive definite matrices
of a simpler form. Here we will approximate fii(A), f22(A) by the absolute square
of reciprocals of finite trigonometric polynomials, while fi2(\) will be approxi-
mated as before by a finite trigonometric polynomial. Given any ¢ > 0, we
can find finite trigonometric polynomials

q o
aN) = D e ™,

k=—q

(5.2) B:(\) = i Bre ™,
be—g

g :
vi(\) = kE e ™,

i = 1, 2, satisfying the inequalities
leaM)[™ Z fud) 2 V)],
BT 2 f2() 2 807
a8 > P,
lea ()8 > M),
e> (x| = )BT = fa®) > M) — fu®F,
e> (fud) — laMDFO) — B > mO) = fu®l,
lea W)™ = )™ < ¢,
B — 18 < e

<5R 11 l‘Rlz
R =
Ra  ile

be the covariance matrix of y when the process z; is such that |a;(\)| 7, |8:(0\)[™
are the spectral densities of the components 1z; , »%: , respectively while v;(A) is

v v

(5.3)

for all . Let
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the cross-spectral density of yx; and sz,, ¢ = 1, 2. It is clear that ;R and ;R
are nonsingular and that
(5.4) R ZR =2 .R.

For the moment let us assume that R is of the same form as one of the mat-
rices RE. Then :

Ru=A"A""  Ryp=w'w
where A;; = a;—; and w;; = Bs; unless 7,7 < ¢ or
N—4N—-—j=<q(a=0,8 =0, =0if k| > g).
It is also clear that the (7, j)th element of Rz is v4—j. Let P = AR w’. Then

ATATY AP

= <w‘1P’A"1 'w_l'w'_l)
<A-1 0 <I P<A"1 0
0 w'\p I 0 w )

It is clear that both
I P I -
and
P I -pP I

are nonnegative definite. Moreover, they commute. Since the matrices commute,
it is clear that their product is nonnegative definite and that I — PP', I —
P'P =z 0.

We would like to show that the maximal eigenvalue A, of either PP’ or P'P
is less than one and bounded away from one as N — «; that is, \n < 1 — e as
N — o« for some ¢ > 0. This can be seen by noting that the minimal eigen-

values of both
I P I —P>
and
P I —P I

are bounded away from zero as N — o« . It will be enough to show this for

< I P
P I
Let u be any 2N vector. Then

,<1 P> (Rn R12>
u u =1 , v = e
P’ I R21 R22

Ri 0
= eu v = ec’'u'u
0 Ry
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A O
asN—»w,wheree,e'>Oandv'=u’<0 ).Now
w
A 0\/I P\*/Aa 0
Rt = .
0 w/\P' I 0 w
1 P\ ( (I — PPy —P(I — P'P)™
P I —-P'0I-PP)* (I -PP™

I =P <(I - pp)™ 0 )
P I 0 (- ppt)
‘We can write

(I - pp)™* 0 = /[(PP)* 0
¢ < 0 I - P’P)") - '§< 0 (P’P)”)’

But

(5.6) since 0 < PP/, P'P = (1 — ¢)I. But then

Dy'®'R*oDy*

k=0

d Dy @'A'(PP")*A 8 D7 — D3 ®'A'P(P'P)*w & D5
—:Dy' @'w'P'(PP')*A1®,Dy'  oDy' 3'w'(P'P)"ws®,Dy’
= Z an
k=0
Now the (v, u)th element of \D5'®'A’P(P'P)w®.D5" is
)

N
1¢§y)ht.‘r 2Pr

?
b=t V a2y

where

1 N (=7
hur = 5= [ 00 [ B OV

= st—‘f
unless ¢, 7 < 12(k + 1)gor N — ¢, N — 7 < 12(k + 1)q. Note that s; = 0 if
|7] > 12(k + 1)g. It is clear that each of the terms

1§0§’)ht.‘r 2¢1(-")

Vel e
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approaches zero as N — o, since |h;,,| is uniformly bounded in #, 7, N and

Lol [}/@ — 0
as N — o for fixed #. But then

N
lim w0 by o)

N> t,7=1 '\/lq;‘l(\ry) 2¢I(\;‘)

»)

N © k2¢(“)
Sk lim Z _ WPtk

= Zaudli® = 2r [ (=3 a(=NF BN (=]
X dm.M("")()\)-

But then
lim \Dy" ®'AP(P'P)*w®,D5"
N->w

x

= 5= | (=N [a(=NFF 8= [y (=N duk ().

Similarly, one can show that

lim D3 @'A’(PP')*A & Dy

N->w
1 x
= o [l BN =N dub )
and
lim D5 1@'w’(P'P)*w B ,D5"

N>
x

=5/, la(=N)[* [B(=N)[**2 |y (=N [* dnM ).

Making use of (5.6), it then follows that

(57) lim D7'®'R™@D5" = lim Y, Qi = 2 lim Qx
N> No>ow k=0 k=0 N->oo
T 2
la(—2)| duM )

1| drl= [a(=N) [B(=N)]? [¥(—=N)?
2e) 17 (=N |e(=N) [B(=N)
L T W= NP BV (=R 2 ®
© (=N Ja( =N BN
L T Oy M)

" Iﬁ(_)\)|2 .
[ T= T e MO
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We have thus found limy.. Dy'®'R8D5" when R is of the same form as one
of the matrices ;R. Let B now be of the general form, and approximate above
and below by R and ;R, respectively. On letting e — 0, we see that

lim D¥'®'R'®D3"

’ Ja(—=2)
G o L| VRN - Fa(—wp 42O
o _[ Fa(—=2) MO
~r Fal=NFa(=X) = Th(=F "*
— ’ fie(=N)
—r fu(—-)\)fm(—-)\) _ |f12(—)\)|2 duM()\)
i fu(—=2) M)

— fu(=Nfa(—=N) — [fu(=N]
We can show that the matrix (5.8) is nonsingular. Clearly
<A uM(\) AMm()\)> >0
AaM(\) ApMQ®)
and fu(\) faA) > |fie\)[* for all \. Now
Faa(=N)2tAuM N2y — fia(—N)21A .M (N)2e
—fa(=NzA aM ()21 + fu(—N)22A M (N2

= (fn(-)\) - %) Z1AnM(N)z, (fn(—m - %) 2 A M (\)z,,

so that

1 ( Fa(=NAuM(N)  —fu(—NA mM(x))
Fu(=Nfaa(—=N) — [fr(=N)[? —fa(=NAGMQA)  fu(=NAxMEQ)

2<A11M()\) 0 )
- 0 AuM®))’

where ¢ > 0. But then matrix (5.8) is greater than or equal to

1 M, O
= €
27 0 M,
and hence is nonsingular. Relation (5.1) is valid. It follows that the limiting

matrix (4.5) is also nonsingular.

6. Asymptotic efficiency of least-squares estimate among linear unbiased
estimates when observed process is complex-valued. We want to find out
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for what types of regression the least-squares estimate is asymptotically
efficient among the linear unbiased estimates for any admissible spectral
density matrix f(\). This amounts to asking for the conditions on M(\)
such that matrix (4.1) is equal to matrix (5.1); that is,

—/" fu(=X) duM () /’ f12(=2) d1M () o
(6.]) - —-_ <1 )

[0 anrto) [ gun) dwtren O ’

[ [ fu(=N)
_x fu(—N)fa(—N) — |f12(—')\)|2 duM(N)
r ful ) dalM(N)

| e fa(= N (=N = [fua(—=M)P

[ fu(—N)
= fu(=Nfa(=2) — lfu(—%)lzdeO\) <1M 0>

" Jfu(—=N) = 0 M .
e fu(=Nfe(=N) — [fu(=N]? daM(Q\)

Let us first see what restraints are imposed on the regression spectrum if we
require asymptotic efficiency of the least-squares estimate in the smaller class
of spectra f(\) where there is no cross-correlation, that is, where fu(A\) = 0.
Since 1y: and 5y, are uncorrelated, they can be treated separately. We make use
of the results of [5] where the problem of estimating the regression coefficients
of a 1-dimensional process with stationary residuals is discussed. The following
restraints on the regression spectrum follow immediately from these results.
The nondecreasing function ;M (A) increases only on a finite set of points
Ni, j=1,---,¢q, where ¢; £ p;, ¢ = 1,2. The jump of M) at i\, is
AuM () = wM(N+) — «M(N—) > 0 and

(6.2) A M (N;) MTA M (M) = S M (), i=12

The sum of the ranks of the matrices A ;M(\;), j=1,---,¢qi,i8p:. Itis
then clear that the set of points of increase of the nondecreasing function M(\)
is the set of points {\;} consisting of the points Az, & = 1, .-+, q1, and o\,
k=1, -+, q.For convenience let ;;M; = ;M (\e+) — ;M (\x—). Relations
(6.2) can then be rewritten oM ; M My = 8 «wM;, % = 1, 2. Here either
uM; > 0 or xM; > 0. We shall obtain additional restraints on the regression
spectrum and thereby show that the sets of points {\;}, {iA;} and {s\;} are the
same.

Let us now see what additional restraints on the regression spectrum are
implied by asymptotic efficiency of the least-squares estimate when the spec-
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trum is such that fu(\) = fz2(\) = 1 and fie(—\;) = «@;, |a;|* < 1. The condition
for asymptotic efficiency is then

Z:<11M,' aj1M; <1M_1 0 1 uM; —ar 1M
ik \ajauM; oM; 0 MYl —lal\—aaM: =M,

M0
- < 0 2M>'
If all the o’s are zero except for one, say «;, equation (6.3) reduces to
< uM; —a:'uM:') B < MM uM; —aml‘fffzﬂ’rlzzM:) —0
—a;uM; 2M; —a; MM uM; aM ;M M ’
so that &M ;M wM; = aM;, 4,k 1 =1,2, 5 k. If all the o’s are zero

except for two, say a; and ai, equation (6.3) reduces to

1 0 oM\ (M0 loa* uMi  — o 1M
1 — Jouf <&,-21M,~ 0 >< 0 21M-1><_ak21Mk Iak|222Mk>
L1 < 0 aka><1M_l 0 ><|°‘1‘|21le —ajqu>=0
I = |eif\azud, 0 0 M7/ \—&uM; |oj'nM;

But equation (6.4) cannot hold for all values of a;, o less than one in absolute
value unless

(6.3)

(6.4)

aM; MM, = 0, 7%k 4,0,s=1,2; %1

All other relations of this type can be obtained analogously from the matrix
equation resulting from the interchange of the first and third matrix on the
left side of equation (6.3). This equation obviously also holds if the least-squares
estimate is asymptotically efficient. All the restraints on the matrices ;;M can
be written briefly

(6.5) My M M, = &, aM,,

where 7,5, = 1,2and k,s = 1, --- , ¢ where ¢ = q1 = ¢». It is clear that
equations (6.5) cannot hold unless both 1M} , 22M > 0 and have the same rank.
Thus asymptotic efficiency of the least-squares estimate implies that p1 = p: .

TueoreM 3. The following conditions are necessary if the least-squares estimate
18 to be asympiotically efficient for all admissible f(\). The function M (\) is a jump
unction with a finite number of jumps A1, <+« , Ny, Where ¢ < p = p1 = p; . Let
the jumps be

iiMe = MM +) — MO =), ,7=1,2.

Then (4 > 0 if 4 is a nonnegative definite matrix but not the null matrix)
My > 0,2i= 1,2andk =1, ---, qand

(6.6) M M7 M, = 8 all,,
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where t,j,l = 1,2 and k, s = 1, -+ , q. uM and M have the same rank. The
sum of the ranks of My, k =1,---,4q, % p, ¢ = 1, 2. These conditions can
easily be seen to be sufficient for the least-squares estimate to be asymplotically effi-
cient for all admissible f(\).

It is of especial interest to consider the case in which both components 1y; , s¥:
of the observed process have a mixed trigonometric and polynomial regression
and the regression vectors of both components are the same; that is,

(») (») —itA
w” = =t T, vy=0,1,---,8,
+1+ 1 — 3¢\,
1¢£’1 ») = 2¢§n+ +») — tre i 2’ y = 0’ 1’ cee 8,
1¢§u+-~-+cu_1+u—1+n) — wf'l"‘"""‘u—l"’"“l"'")
—$EN,
=", v=20,1,--,8;

where Ay, - - -, A, are distinct. The least-squares estimate can be seen to be asymp- -
totically efficient in the case of such a regression. The jumps of M(A) are

at A1, +++, A\gand
0 0 O
My =10 M, 0],

0 0 O

where

pt+rv+1 ’

and the null submatrix in the upper left-hand corner of ;;M; is of order

*Z1(si + 1). It is clear that equations (5.6) are satisfied in this case. One
should note that if the regression vectors of the two components are unequal in num-
ber, the least-squares estimate is not asymptotically efficiens. This, for example,
would be the case if one component had a linear regression and the other a quad-
ratic regression.

7. Asymptotic efficiency of the least squares estimate when the observed
process is real-valued. The case of greatest interest is that in which the
process y. and the regression vectors are real. This condition imposes addi-
tional restraints on the spectrum of the process and the regression spectrum.
Then

Mk={\/<2n+1)(2u+1).,,,,=0,1, ...,Sk}

7.1) fa\) = fu(=N), i=1,2
F2(A) = fa(=N),

and

(7.2) dM () = TT(=N).

We shall obtain necessary and sufficient conditions on the regression spectrum
for the least-squares estimate to be asymptotically efficient for such a process.
The derivation of these conditions is analogous to that followed in Section 6.
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Just as in Section 6 one can see that asymptotic efficiency of the least-squares
estimate implies that there are only a finite number of points of increase of M (A).
Because of (7.2) we need only consider the nonnegative points of increase of
M(\). Let the nonnegative points of increase be Ay = 0 < Ay < +++ < A,. Of
course zero needn’t be one of the points of increase but we include it because if
it is, the condition on the jump at zero is different from that on jumps at other
points. Let ;M denote the jump of ;M (A) at A« . Given the matrix 4, let Re(4)
and Im(4) be the matrices whose elements are the real and imaginary parts,
respectively, of the corresponding elements of A. Equation (6.1) can then be
rewritten as

Z, 9 <11fj Re (uM;) Re (ofjM J)> <1M - 0_l> 9
4 Re (zxf uM j) 2fi Re M ; 0 oM
, 2 < »fi Re uMi) —Re (ufi 12Mk)> _ <1M 0 >
¥ whenfe — [/ \—Re (afinMy)  ufe Re (M) 0 M)

making use of (7.1) and (7.2). Here, :ifi = :if(At). The primed summations indi-
cate that the coefficient 2 in the summation is to be replaced by coefficient one
when either j or &k = 1, since \; = 0. Because of (7.2) we can see that the mat-
rices ;;M, have real elements. The fact that fi:(\) = fu(\) indicates that .;fi,
4,7 = 1, 2, is real. Now equation (7.3) is assumed to hold for all uf;, =f; > 0
and all of; such that |15f;|® < ufjef;. A discussion of equation (7.3) analogous to
that carried out in Section 6 indicates that the equation cannot be valid under
these conditions unless the following restraints on the matrices i;My are satisfied:

2 Re (;;M1);M ™ Re (#M,) = 81, Re (aM1)

(7.3)

if 1 5 0;
MM @My = aMy,
2Im ;M) ;M Im(jiMi) = —du Re(ul1),
ifi # jand l, k = 1, since Im(,;M,) = 0;
Re(:;M1),M ™ Im(;jiM) = Im(;iMe) M~ Re(uMs),
where § &= land k # 1; and finally,
Re(:;Me);M ™ Im(sM,) = Im(aMi)M ™" Re(wM.) = 0

(74)

if k 5% s. It can also be readily seen that equation (7.3) will be satisfied for all ad-
missible spectra of the process if the conditions (7.4) just derived are satisfied.
TuroreM 4. The least-squares estimate is asymptotically efficient for all admissi-
ble spectra of the process if and only if the regression spectrum is a jump spectrum
with a finite number of jumps and the matrices ;M satisfy the conditions (7.4).
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It is again of special interest to consider the case in which both components
e, 2y of the observed process have a mixed trigonometric and polynomial
regression and the regression vectors of both component are the same, so that

(» [©) =
1¢t' = 2§0¢' = t', 14 0, 1, cre, 81,
+1+4+ +1+
l‘pg'l ” = W;‘l ” = t' CcOos t)\z y Vv = 0, 1, crty, Sg ’
(s1+82+2+ +2+ :
we » = .,¢,‘c"+’? » = ¢"sin 12VIN v=0,1,:-+, 8.
280+« - +428, 1 +2u—1 +289+ - - - +28y . 12u—1+

. §81+ 8o+« o+28, 1 H2u—1+9) Eu 32 sy —12u—1+9) _ £’ cos HW

v=20,1,---, 84,

2314-232+---+23.,,_1+:u+2u+') — 2¢501+232+~--+28u_1+su+2u+r) — t'sin t>\u,

1P

v=0,1,---, 84,

where i = 0 <Ay < --+ < A, . Thejumps of M(\) are at 0, =Xz, -+, £\y.
We need only discuss the jumps at nonnegative A, since dM(\) = dM(—N).
Now '

M, O
jle = [ ]’
0 0

V&G FDE+D., , _q .. }
Ml—{ v+ 1 smr = 0,1, y 17,

0 O 0
0 M, —iM,
0 <M, M,
0 O 0

where

oS O©O © ©

:‘Mz=%l

where

_VEBFLIEFD. . _ “.}

and the null submatrix in the upper left-hand corner of ,M; is of order
si+1+4+2 Z;’.;% (s» + 1). Tt is clear that the least-squares estimate is asymptoti-
cally efficient in the case of such a regression, since the conditions (7.4) are satisfied.
As in the case of a complex-valued process, one does not have asymptotic
efficiency of the least-squares estimate if the regression vectors of the two
components are unequal in number. There is, however, an additional restriction
that enters into this context and did not arise in Section 6. If one of the terms in
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the regression is £ cos I\, \ # 0, one must also have the term §” sin ¢\ for asymp-
totic efficiency of the least-squares estimate. Thus, one does not have asymptotic
efficiency of the least-squares estimate in the case of the regression

1My = 1€ COS I\, gM; = o€ COS I, A0,
and one does in the case of the regression
1M = 161 €08 N + ¢ sin I\,
gM; = 9€1 COS N + o€ SIn 2N, A% 0.

8. The Markov and least-squares estimate when the regression of one
component vanishes. The special case in which the regression of one component
vanishes, say ¢m; = 0, has not yet been discussed but is of some interest. It is
clear that the least-squares estimate can not be asymptotically efficient for all
admissible spectra of the observed process in this case. Let ¢* now denote a
linear unbiased estimate of ic. The least-squares estimate of ;¢ in this case is

(81) C: = (1‘1”1‘1’)_11@/1’!/.
The covariance matrix of the least-squares estimate is
(82) E(ct — 10)(ct — 1) = (2'19) @' Ru 2(&'®) "
The Markov estimate ¢k of ¢ is
-1

* ~1 12 —1
(83) Cy = <(1‘I’l O)R <0>> (1‘1” O)R Y.
The covariance matrix of the Markov estimate is

2\\ 7

@84) E(cy — 1©)(ch — 10 .= ((@I 0)R™ <O>>

= (@ (Ru — RuRz Ry) ™ 1@7Y).

By using techniques analogous to those of Sections 4 and 5, one can show that

(85) llm 1DNE(02 —_ 10)(6}': -_ 1C)I1DN = 21r1M_1f_ fn(—‘)\) duM()\) 1M_1,

while
}ri m 1Dy Blel — 1¢)(ci — o) 1Dy
(86) . . .
= _2—1;-( —= fu(—=N)faa(—N) — Iflz(—)\)lzduMO\)>

Of course c¥ is the best of all linear unbiased estimates of ;¢ in that it has the
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smallest covariance matrix of them all. It is interesting to compare the two esti-
mates when ym; = ¢, a constant. Then

M) — M(—7) = MO+) — M@O-) =
so that

Bl — o _|faO)]
I e =9 = ! T )0

Some aspects of this example have been discussed in [1] from the point of view of
discriminant analysis.

9. Processes of dimension higher than two. We shall discuss briefly the
case of an n-dimensional process y; with stationary residuals, » = 3, and
indicate that most of the results obtained in the two-dimensional case are
still valid. Assumptions analogous to those of Sections 2 and 3 are made. Let

Py
My = Zl %'Cv(ogy)) t=1-,n,
be the regression of the 7th component .y, of y.. The spectrum of the residual
process z; = y; — m, is again assumed absolutely continuous with continuous
spectral densities f;;(A), 4,7 = 1, -+, n. Of course f;;(\) is the cross-spectral
density of i«; and ;z, . The determinant |f(A)| of the matrix

9.1) FN) =Afis(\); 4,7 = L. )n}

is assumed to be positive for all A.

Let
iC1 i€
,~c=<§> and c=<5>.
iCpi nC,

Let c¥ and cy be the least-squares estimate and the Markov estimate of ¢, re-

spectlvely, in terms of the observed process 91, ---, yx. The matrices &,
1 =1, , 1, are defined just as in Section 2, and we set
@ 0
& =
0o .9
1y
R is the covariance matrix of the vector [ : ]. The expressions given for ci
nY

and cy and their respective covariance matrices in Section 1 are still valid.
The cross-spectral distribution function of the regression vectors of : and
;y: are computed just as in the two-dimensional case. The matrices
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wM(w) — iM(—7) = M, i =1, ---,n, are assumed to be nonsingular. Let
MQ\) = {i;MM\);4,j =1, ---,n}. We set

1Dy 0
D)v =
0 2Dx
Let 0;;(\) be the cofactor of the element f;;(A) in the matrix f(A). By using an

elaboration of the methods of Sections 4 and 5, one can show that

}rim Dy E(ct — c)(c} — ¢)'Dy

(9.2) -
= ZWM’I{f fij(—)\) d”M()\),'l,7 =1 ’n} M-_1
and
lim Dy E(cy — ¢)(ck — )’
N-»o0
9.3)

1 ) . . —'l.
=5 {]:.7 0i;(—=N\) di; M(\);4,5 =1, - -+ ,n}

The analogues of the results obtained in Sections 6 and 7 on asymptotic efficiency
of the least-squares estimate c. are valid in the n-dimensional case and. can. be proved

in the same way.

10. Concluding remarks. It would be very interesting to find out for what
sample size N the various results obtained on asymptotic efficiency of the
least-squares estimate are practically valid. An effective way to find out
would be to set up a computational program for the calculation of the co-
variance matrices of the least-squares and Markov estimates for a variety
of interesting regressions and spectra f(A). The approximations derived in
this paper for these covariance matrices should also be computed and com-
pared with the true covariance matrices.

Consider the case of a real two-dimensional process y; = < ’Z') where both
' 29t

components have constant mean values Egy; = ¢, ¢ = 1, 2, which we want to
estimate. The simplest case of cross-correlation, and a rather uninteresting one,
is that in which

cov (Ye, Y:) = ber,

cov (1y¢ , zyf) = pbir )
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where |[p| < 1. Nonetheless, it is amusing to note that in this case the least-
squares estimate is efficient for all finite N and that

E(ct — o)(ck — ¢)' = E(ck — c)(cx — ¢)'

= 2xDx'M* { f fii(=N) d iMQN); 4,7 = 1, 2} MDY

[ -1
= 2'7rDJyTv1 { f_ 0,;,'(—'7\) d ,;,'M(}\); 1,,] = 1, 2} ;1

L

46 )
T N\» 1)
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