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In the cases presented above, the dimension, m, of the parameter space w
of the null hypothesis is either 0 or 1. This can be extended somewhat. If the
null hypothesis is that the ¢’s fall into m equal sets, —2 In X is distributed as
x> with 2(k — m) degrees of freedom provided the null hypothesis is true. For
example, suppose k = 6 and that we test the hypothesis 6, = 6, = 6; = 6, and
05 = 05 against all possible alternatives. Then —2 In A has a x*-distribution with

2(6 — 2) = 8 degrees of freedom.
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AN APPLICATION OF CHUNG’S LEMMA TO THE KIEFER-WOLFOWITZ
STOCHASTIC APPROXIMATION PROCEDURE!

By Cyrus DERMAN’

Syracuse University

1. Summary. Let M(z) be a strictly increasing regression function for z < 6,
and strictly decreasing regression function for z > 6. Under conditions 1, 2,
and 3 given below, the stochastic approximation procedure proposed by Kiefer
and Wolfowitz [3] is shown to converge stochastically to 8. Under the additional
conditions 4, 5, 6 given below, the procedure is shown to converge in distribution
to the normal distribution. Our method is the one used by Chung [2].

2. Introduction. Let H(y |z) be a family of distribution functions which
depend on the parameter = and let M(x) = [Zo y dH(y | x). Suppose M (z) is
strictly increasing for x < 6, and strictly decreasing for > 6. Let {a,} and
{c.} be sequences of positive numbers such that

Cn —™ 0, Za,. = o, Zancn < o, Zaiczz < 0,

Kiefer and Wolfowitz [3] suggested a recursive scheme for estimating 6 which
is as follows. Let 2z; be an arbitrary real number. For all positive integral n,

(1) Zn+l = Zn '+' gﬁ (y2n - y2n-—l),

where 92,1 and 2, are independent chance variables with respective distribu-
tions H(y |2, + ¢,) and H(y |2, — c¢.). Under certain regularity conditions
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they proved that Z, converges stochastically to 6 as n — <. Blum [1], later,
under slightly weaker conditions proved convergence with probability one.
However, the regularity conditions imposed are such, that they are not
satisfied if M(z) = K — K’ (z — 6)* where K and K’ are any constants (K’ > 0).
Since this case is a common one, it seems important that it be considered. Below,
we shall prove some convergence theorems under conditions which are quite
restrictive. However, the above function, and functions of a slightly more general
type, will satisfy these conditions. Since our purpose is to show that the Kiefer-
Wolfowitz procedure is applicable in the parabolic case, no attempt will be
made here to weaken the conditions.

The main tool to be used is the following lemma proved by Chung [2] which he
used in his analysis of the Robbins-Monro [4] procedure.

LeMMA. Suppose {b,},n = 1 is a sequence of real numbers such that forn = no,

bapn = (1 —c/n)ba+c1/n', where0 <s<1,s<tc>0,¢>0.

Then l_i_g,.wn b, = a1 /c. If

@ bmé(l—->b +o

where0 < s < 1,8 <t,ca=c>0,c <O0,then limnmn‘"‘b” <a/c
We remark that if in (2) ¢, is replaced by a sequence {cz.} of positive numbers
such that ¢, — 0, then lim, ., 7' b, < 0.

3. A Convergence Theorem. We postulate the following conditions.
Conpi1TION 1. There exist positive constants Ky , K, , and Co such that for every
¢, where 0 < ¢ < Cy

—cKy(x — 0 = (M(x +¢) — M(z — ¢))(x — 0) £ — cKi(x — 0)°.

The above is a condition that the function M(z) does not increase (decrease)
too rapidly or too slowly. We remark that for M(z) = K — K'(z — 6)},
K1 = Kz = K'.

Conprrion 2. Let o*(x) = [2% (y — M(x))* dH(ylx). There exist real num-
bers M, and M, such that

0< M 2@ £ My < w,

ConprTioN 3. Let n and € be any two real numbers such that n > ¢ > 0 and
n+e< i Weseta,=1/n"andc, = 1/n"*"
Tueorem 1. If Conditions 1, 2 and 3 hold, then

@ < im < T, < 22

2 n->0 n-»0 K1

where by, = E(Z, — 6)*.
Proor. From (1) we have
@ bus = bt 2 B — - ) + % E(yz,, — Yanr)’

It follows easily from Condxtlon 1 that



534 CYRUS DERMAN

(5) —cnbin é E(yZn - y2n—1)(Zn - 0) é - cnKlbn )
also from Conditions 1 and 2 we have
(6) 2M; + ciKibn £ E@an — Yen)' S 2Mz + cnK3bs .

Therefore from (4), (5), (6) and Condition 3 we get

2K, 2M, 2K, K oM
bn (1 ) + —_— = bn <1 - = + nz(l") + n1+2(1116) § b”+1

= nite—e =

2K, K: 2M,
(7) = bn <1 - n_l_'; + nzu—q) + nit2nr—e

_ 1 K: 2M,

For any & > 0, there exists an no such that for n > ng, 2K; — K3/ n'™ =
2(Ky, — 8). Therefore, by the second part of Chung’s lemma, lim, .o 7*" b, <
M; / K, — 5. But since § is arbitrary, the right side of (3) follows. The left side of
(3) follows immediately from (7) and the first part of Chung’s Lemma.

It is a corollary of Theorem 1 that Z, converges stochastically to § asn — «.
We remark that for stochastic convergence we need not impose the condition

that M 1> 0.
4. Convergence to the Normal Distribution. Let
B (z) = [%s|ly — M(x)|" dH(ylz) for r > 0.

We shall need the following condition on the 8.
ConDITION 4. There exist real numbers Mi(r) and Ms(r) such that for all z,

0 < Mi(r) £ B”(@) S Ma(r) < oo, r=1,2 ---.

We shall continue to denote M(2) and M2(2) by M, and M, respectively.
Lemma 1. If Conditions 1, 3 and 4 hold, then

k
(2% — 1)(©2k — 3) -+- 3-1 G{il) < lim e

2 n-»>0

® .
< fim 20 < 2k — (2 - 3) --- 3-1 (ic‘2> y k=12,
n->0 1
where b = E(Z, — 6)".
Proor. The proof is by induction. By theorem 1, (8) is true when k¥ = 1.
From (1) and Condition 3 we have for any positive integer r,

r ” r r—
b = b + e B = 07 (o — Yand)

rir — 1) e 2
© + e B = 0 e ~ o)

+ £

T) —-1—- E(Z” - 0)'—j(y2n - yzn-l) j-

nil2+i(—e)
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Imposing Conditions 1, 3 and 4 and utilizing the induction assumption, (9)
yields for even 7,

TK 1

2
B < b9 (1 ~ s ) _Ki )

t =5 e
rr—1) ---3-1 <Mz>('b2)/2 + o(n—lr(q—e/2)+1—e)).

+ nr—e+a—9 K.

The inequality on the right side of (8) follows, as before, from an application of
Chung’s lemma. The inequality on the left can be obtained in a similar manner,
replacing M, by M; and K; by K , reversing the inequalities, and again applying
Chung’s lemma. This proves the lemma.

CoNbITION 5. o*(2) is continuous at = 6.

ConbpiITION 6. There exist positive numbers 8, L, and Co\such that for all c, 0 <
c < (o,

M@E+c¢) — M@ —c) = cK(x)(x — 0)

where
—K —Wz—0'ZK@z=—-K +Wz—206° for |r — 0 £ L,
—K, < K(x) £ — K; for |r— 6 > L

and where W and K' are positive number such that — K’ + WL' £ — K, and
— K —wLl! =2 — K,.

Condition 6 is a strengthening of Condition 1 to the extent that locally at
x = 6, M(z) is parabolic.

LemMa 2. If Conditions 2, 3, 4, 5, 6 hold, then

2
(10) lim b, = :’%’2

Proor. From Condition 6 we have
¢o(—K'by — WE|Z, — 6'"") £ E(ysn — Yon-1)(Zn — 6)
= ci(—K'b, + WE|Z, — 0]'*).

From Lemma 1 and Lyapunov’s inequality for n large enough and for some &

(11) E|Z, — o+ < (b < M
' - = Rm(r—e/a+d

where R denotes the upper bound in (8) and R; denotes the lower bound in (8)
for k = 1. Also,

E(y‘zn - y2n—1)2 = E(a'z(zn + cn) + 0'2(Zn - cn)) + Ci'YKgbn

where |y| < 1. But since Z, converges stochastically to 6, ¢, — 0, and o*(z) is
bounded and continuous at 6, we have using (11)
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. _ K 26%(0) + dn
12) bpyr = bn{l (K’ — wa) + 2(1—:)} + dn1+2(n—e) ’

where both w, and d, tend to zero as n — «. Both parts of Chung’s lemma can
be applied to (12). Therefore, (10) follows.

Lemma 3. If Conditions 2, 3, 4, 5, 6 hold, then lim,.., v *b5? — 0.

Proor. It follows from (1) and Condition 6 that

14
b (1 - ni{_) nHE(Z — 0" = b

1—e
< p® (1 - -Ifi) + W Bz, — o,

nl—-e nl—-

(13)

But by Lemma 1 and Lyapunov’s inequality, there is a constant R > 0 depend-
ent on § such that

144 R
(14) E IZn - 0[ é m-
From (13) and (14) and the remark following Chung’s lemma it follows that
(15) fim "™ *b{” < 0.

Also, it can be shown in the same way that
(16) Ex_n (b)) = 0.

Lemma 3 follows from (15) and (16).
TaroreMm 2. If Conditions 2, 3, 4, 5, 6 hold, then n”_‘/z(Z — 0) converges m
distribution to a normal distribution with mean zero and variance o (6)/K’.
Proor. By using induction, it follows from lemmas 1, 2 and 3, and Lyapunov’s
inequality that

) lim 2" b7 = ( 70) ) (r —1)(r — 8) --- 3-1forreven,and

= 0 for r odd

The method of induction is similar to that used in proving Lemma 1. We shall
omit the details. However, (17) indicates that the moments of " *(Z, — 6)
converge to the moments of the indicated normal distribution. The result
follows from the well-known theorem on the convergence of moments.
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