APPROXIMATE UPPER PERCENTAGE POINTS FOR EXTREME VALUES
IN MULTINOMIAL SAMPLING
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1. Summary. Given a k-fold multinomial distribution with equal probability
for each category, the probability of the largest frequency in any category is
desired. A simple asymptotic approximation to the upper percentage points of
this distribution is obtained. A table of .95 and .99 points of the approximation
for k = 1(1)25, and a table comparing these with actual values for k = 3, 4, 5
and n = 3(1)12, are provided. An investigation of the moment problem is given.

2. The approximation. The problem of testing for a significant difference
between two observations has long been rather completely solved, but the ex-
tension to 3 or more observed values has only recently been comprehensively
undertaken. Particularly, the problem of testing whether the largest observed
categorical frequency in a multinomial distribution is significant is of interest
to social scientists. One wishes to have a subject rate » situations on a k-point
scale and then to inquire whether the number of situations occurring most
frequently at a scale point is significant so that one might further study the
properties of such situations. The extreme categorical frequencies are of interest,
since they are the most valuable for further study; and the null hypothesis of
equal categorical probabilities is the most likely beginning hypothesis for the
social scientist in this situation.

Let F1, Fo, - - -, Fi be the observed proportions of a sample of n objects into
k multinomial categories with assumed equal probabilities. Using the well-
known multivariate normal approximation to the multinomial one computes
easily [3] that in this problem the observed proportions are asymptotically jointly
multivariately normally distributed with means 1/k, variances (¢ — 1) / k’n,
and covariances —1 / k’n. Let

_ F;—1/k .

be the corresponding standardized variable, and let E; represent the event
t; = t*. From

Pr(max t; =2 t*) = Pr(FiuE,u -+- u Ey)
@ =X Pr(E) — L Pr(BE) + — -,
<J

= 1’2,... ’k)

and the fact that the partial sums alternate about the total sum, it follows that
(3) X Pr(E) =z Pr(max t; = t*) = >, Pr(E) — ;, Pr(E:E;).
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Since Pr(E.E;) = Pr(E;)Pr(E;) and all categorical probabilities are equal, (3)
reduces to

(4) k Pr(E) = Pr(max t; = *) = k Pr(E)) — k(k — D[PrE)P

For ¢* sufficiently large, [Pr(E;)]’ is small enough to be neglected, and we have
approximately

%) Pr(max t; = t*) = k Pe(H5).

Because of the asymptotic normality, it follows that

L
—142

k
6) Pr(max {; = ¢¥) = “—\/2—*; e dt
t.

for ¢* large. (The author is indebted to the referee for the above simplified proof.)

Table 1 gives critical values of ¢ for .95 and .99 significance levels for k =
1,2, -+, 25. For selected values of k and n, table 2 gives a comparison between
the approximate values of the actual frequencies and the computed values from
the exact distributions. Since observed categorical frequencies must necessarily
be integers, the approximation appears satisfactory even for small values of n.
The fractional computed values were arrived at by spreading the probability
for a given integral value over a unit interval extending one-half unit on each
side of the given integer. Further computations by the author [2] indicate that
the approximation decreases in accuracy for increasing k. This is suggested by
(4) above.

TABLE 1

k ° 2
N f“ exp (—3t") dt

=Pr{tk(=1i"£1_/k>;t*|pk;p,. (i=1,2,~~~,k—~1)}=a

Tk

k t* (a = .05) * (@ = .01) k i* (@ = ,05) t* (@ = .01)
1 1.96 2.576 13 2.899 3.360
2 2.241 2.807 14 2.913 3.384
3 2.394 2.936 15 2.936 3.403
4 2.498 3.024 16 2.956 3.421
5 2.576 3.090 17 2.974 3.437
6 2.638 3.144 18 2.991 3.453
7 2.690 3.189 19 3.008 3.467
8 2.734 3.227 20 3.024 3.481
9 2.773 3.261 21 3.038 3.494
10 2.807 3.201 22 3.053 3.505
11 2.837 3.317 23 3.065 3.518
12 2.865 3.342 24 3.079 3.529
25 3.090 3.540
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TABLE 2

Computed vs. approzimate .05 and .01 values of upper percentage points for the
largest observation from a multinominal sample

k=3 k=4 k=35
Comp. Approx. Comp. Approx. Comp. Approx.
n=3 .05 3.05 2.9547
.01 3.41 3.3973
n =4 .05 3.4562 3.5355 3.3166 3.1633
.01 4.2298 4.1014 3.8597 3.6188
n=5 .05 4.1950 4.1902 3.7133 3.6687 3.4359 3.3041
.01 4.6890 4.7615 4.3960 4.1780 4.2375 3.7638
n=6 .05 4.5707 4.7643 4.2614 4.1495 3.9530 3.7240
.01 5.3807 5.3902 4.9864 4.7074 4.4738 4.2276
n=7 .05 5.2445 5.3191 4,5327 4.6118 4.3142 4.1262
.01 6.0499 5.9951 5.3996 5.2144 5.1213 4.6702
n=28 .05 5.6751 5.8587 5.1404 5.0594 4.9447 4.5145
.01 6.4562 6.5813 5.9495 5.7037 5.4164 5.0960
n=09 .05 6.2542 6.3856 5.4363 5.4950 5.0802 4.8913
.01 7.1773 7.1521 6.3692 6.1783 5.6570 5.5081
n=10 .05 6.6839 6.9021 5.9455 5.9205 5.4012 5.2584
.01 7.5219 7.7100 6.8255 6.6408 6.4798 5.9086
n=11 .05 7.2368 7.4096
.01 8.2369 8.2570
w1z 05 | 7.6402 7.9004
.01 8.6580 8.7945

3. The moment problem. Greenwood and Glascow [1] have investigated the
moments of the above distribution for ¥ = 2 and 3. They arrived at exact and
approximate means and variances for k = 2 and at approximate means and
variances for a chosen pair in the k¥ = 3 situation. An effort to extend their
methods to the general case was almost completely unsatisfactory.

For the case k = 3, the approximate probability density function correspond-
ing to (6) provides a suitable approach to the moment-generating function.
Assuming &3 = f, = t ; one has approximately

3! i [° (OLI s
M omgt @ =5 [ ewl-i-0Tde [ an.

2w o )
For 6 sufficiently small, the integral over region III in Fig. 1 may be taken as
approximately equal to the area of this triangular region. One has

3 (3/2)%0 31
(8) mgf () = exp (367 [1 + —\/—2—;]0 exp (—%2") dv + 5 \/T§02] ,
and for small @ this is approximately
. 12 343 343 2]
® mat @) = exp (409 [ 1+ 22 0423 1).
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Expanding exp (36°) in series and multiplying yields

(10) mgf(ta)-1+3‘/—o+ [3‘/_ ].,.

2V2r
This is the megf of t; = (F5 — §)/0s, where o3 = (1-2-1 / 3-3-n)"?, and hence
(11) E(F3) = o:sE(t:) + 33 1/2—: + 3

Multiplying this result by n gives the expected value of the greatest number in
any of the three categories.

For the variance of F; we have
1

2 1
(12 EED = B + 3 EW +5 = 5+ vam+ 1 (5 55) -

so that the proper subtraction gives

2_38 __1 .0
m " 4m T 2m V3 an

This is in accord with approximations to the moments as performed in the
thesis [2] of which this paperis a part. Two approximations were attempted: one

by standardizing the variables and performing integrations of the resulting
multivariate normal distribution; the other by approximating the sums in the

(13) var (F5) =

ot
[\

—————————— e )
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ts

Fi1a. 2

exact expected values by means of Stirling’s formula for the factorial. Both of
these approximations gave the same results as the above moments for £ = 3.
For higher values of %, the first method became excessively laborious and the
second broke down completely.

An extension of the mgf technique even to the case k¥ = 4 presents difficulties;
analogous to (8) we have

mef (1) = @:’;—;3,—2 exp (1) [ " exp [—3(t — 07 dta
(14)

(2)key 3) 4¢3 ,
. f exp (—16) dis f exp (—1&) dt.
0 0
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The regions I, II, and III are again available (Fig. 2), and the integral over I is
still equal to unity; but simple approximations to the integrals over the other
regions are not apparent. It is clear that for higher values of & these difficulties
become serious and satisfactory approximations become less elementary. No
effort has been made to evaluate the mgf for general values of k.
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