ACCURATE SEQUENTIAL TESTS ON THE MEAN OF AN
EXPONENTIAL DISTRIBUTION

By G. E. ALBERT

University of Tennessee

0. Summary. In this paper, methods introduced earlier by the author [1] are
used to obtain simple, accurate formulas for the decision boundaries for sequen-
tial probability ratio tests for simple hypotheses and alternatives on the mean
6 of the exponential distribution 6! exp(—u/6). Examples are provided to indi-
cate the accuracy and the degree of complexity of the results. It is hoped that
the results given here will find applications in life testing and statistical studies
of radioactive decay.

1. Some integral equations. Consider a sequential probability ratio test for a
simple hypothesis 6, and alternative 6, > 6; on the mean of the exponential
distribution

1) g(u; 6) = 07 exp(—u/0), u > 0.

The substitutions & = 7, Q&) = log(—¢), v = u and f(v; &) = (—£)exp(&v)
identify the present problem with a more general one studied in Sections 4 and
6 of [1]. This identification will not be used here because it introduces needless
complication of notation in the simple problem at hand. No confusion should
arise from similarities or differences between the notations used in [1] and those
used here.

Define the parameters -

r = 0/6, h = logr, m =

and its p.d.f. is

flz;m) = m™ exp[—(z + h)/m)], zZ —h,
2)
=0, z < —h.

Asin [1], Part II, let —b and a be the decision boundaries on the cumulative
sums Ty = 2 4o2; of z and let the starting point zo = 2o of the test be chosen
arbitrarily in the open interval (—b, a). When @ is the true value of the mean of

Received March 14, 1955.
460

[
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to 2z
The Annals of Mathematical Statistics. MINGI

®
WwWw.jstor.org



ACCURATE SEQUENTIAL TESTS 461

(1), the probability Pi(z, ; 8) of deciding in favor of the hypothesis 6; and the
expected duration M;(zo ; 6) of the test satisfy the integral equations

@ Py(z;6) = :f(y —x;m) dy + L Pyi(y; Of(y — ; m)dy,

@ M) =1+ [ My 0 — zm) dy

on the interval (—b, a). The kernel f(y — z; m) is obtained from (2). The prob-
ability of deciding in favor of the alternative hypothesis 6, is given by P.(z; 6) =
1—-P 1(:12; 0).

The integral equations (3) and (4) can be solved exactly by a simple device
that will be indicated in Section 3, below. The results are too unwieldy for
practical use in the determination of decision boundaries for preassigned error
risks. Approximate solutions for the integral equations will also be obtained.
These are relatively easy to use and are demonstrated to be of sufficient accuracy
to be considered essentially exact for practical purposes.

It will be convenient to transform the integral equations slightly by introduc-
ing the quantities

(5) H = h/m, A = a/m, B = b/m, s = zx/m, = y/m.

Account being taken of the discontinuity of the kernel, the equations (3) and
(4) take the forms

A
Py(ms; 6) = 1 — 77 +[ Py(mt; )¢t dt, —B < s < —B + H,
B

®) )
= f Py(mt; 0)e™ 7 dt, —B+H<s<A,
s—H
and
A
Mi(ms,8) = 1 + [ Mi(mt; )¢~ di, —-B<s<-B+H,
B
7) 4
=14+ f My(mt; )¢t di, —B+ H =5 < A.
8—H

2. Approximate solutions of (6). Let n be any positive integer or zero with
the restriction that —B + nH =< A and let A = A(6) be the non-zero solution
of the equation

14+2=¢"
Define the functions @,(s) and ¢.(s) by
n _ F) .
Gals) = 2 (—31% ¢ (s + B — jH)',
J=0 :
N M

8, — e

¥a(s)
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where 3, is a constant to be determined. Let ¢,(s; §) denote a function defined
on the interval (—B, A) by

1—C,e 5@, (s)y, —B+(k—1)H=<s=<—-B+FkH,
(8) ¢”(s;0)E k=1)2"'°:n7

where C, is a constant to be determined. When n = 0, the first form on the right
in (8) is to be deleted. Let ®.(s; 6) denote the iterate of the function (8) under
the operator on the right in equation (6).

It will be shown that if €, and 8, are any pair of constants related by the equa-
tion

) Cue™G.{—B + (n 4+ 1)H} = 1 — Yu{—B + (n + DH},

then ¢.(s; 6) and its iterate ®.(s; 6) are identical on the subintervals —B <
s< —B+nHand —B + (n + 1)H £ s < A of (—B, A). Theidentity does
not persist to the subinterval —B + nH < s £ —B + (n + 1)H, but it will
be shown that pairs of values 8,(6, U), Cn(8, U) and 8,(6, L), Cx(6, L) exist for
8, and C, such that (9) is satisfied and the resulting functions ¢.(s; 6, U) and
éa(s; 0, L) and their iterates ®.(s; 6, U) and ®,(s; 6, L) have the properties

Ba(s; 0, U) < ¢als; 6, U),  @als; 8, L) Z ¢uls; 0, L),

(10)
—B+nH=<s=< —-B+ (n+ 1)H.

It follows from Theorem 4 of [1] that ¢.(s; 8, U) and ¢.(s; 6, L) are respectively
upper and lower bounds for the function Py(ms; 6) over the entire interval (—B, 4).
Specifically, the stated values of 3, are defined by the following: Let

G.{—B + (n + 1)H}e"™M* — G.{—B + (n + 1)H — «}

an @0 = TG BT+ DI — Gl B+ @+ DH — 7]
0<z=H,
then
12) 8.0, U)e - = min Qu(z; 6), 0=z=H,
8.(0, L)e ™™ = max Q.(z; ), 0=z =H.

The values C,(6, U) and C.(6, L) are then defined by using (12) in (9).
In general, the extrema required in (12) must be determined numerically.
This is inconvenient. The value of 8, specified by

13) 8, = 8,00, C) = Q.(H; 0)6)\(B—nH)

is relatively easy to calculate. It and its companion value C.(8; C), defined by
(9) and (13), define an approximate solution ¢.(s; 8, C) for the equation (6)
that is continuous on the whole interval (—B, A) and which lies between the
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corresponding upper and lower bounds, at least on the important subinterval
—B 4+ nH £s < A.

The proofs of the facts stated above are a matter of laborious detail that will
be sketched next. The uninterested reader should proceed at once to the next
section. The proofs of (10) will be divided into cases.

Cask (i): —B < s £ —B + H. In this case the iterate of ¢.(s; 6) is given by

n —B+kH
‘I’,,,(S; 0) =1— ea+8—H + Z [ e—t+:—E{l - CneH-B_HGk_l(t)} dt
k=1 B+ (k-1)H

A
+ [ ernaa
B+nH

=1—= es+8—H {1 - ,; [ e—(k—l)H — e—kE]

~ €3 [Gl=B + (b + DH] — Gil=B + (& + DH]

A(B+H)—(1+NnH
—y\-1] € —\M—nH
= @ =™ [—1+—x—“e ‘"]'

This can be simplified by the use of 1 4+ \ = €7, the identities

n
—~(k—1)H —kH- H
1- kz:l le —e¢l=e",

3 (GU=B + (: + DH] — Gl~B + (b + DH) = Go[~B + (a-+ DH] — 1,

and the relation (9) to the form &,(s; 0) = 1 — Cae'¥*™" = ¢,(s; 0).
Case (ii): =B+ (M — 1)H £ s < —B + MH,1 < M = n.In this case
the iterate is given by

—B4(M—1)H

&,(s; 6) = f L e BTG (1) dt

&—H

n — B+kH
+2 [M,H),, FHTE(L — CaeP G ()} dt

A
s e

Devices similar to those used in Case (i) reduce this to the form ¢,(s; 8) =
1 — Cue"t® 7Gy_(s) appropriate to this interval.
CasE (iii): =B 4+ (n 4+ 1)H £ s < A. In this case

A

(14) 2065 0) = [ a6 dt = (o)

8

is almost immediate. The only reduction needed follows from 1 4+ X = exp(AH).
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Cask (iv): —B 4+ nH £ s £ —B + (n + 1)H. In this case the iterate takes
the form

Ba(s; 0) = f

s—~H

—B+nH

A
€T — Coe PTG (0)) dt f &Nl di
—~B+nH

Add and subtract the integral over (s — H, —B + nH) of the quantity ¥.(f)
exp(—t + s — H) and use the formal identity (14) to reduce this to the form

®n(s; 6) = ¥u(s) + ea(s; 0),
n(s;0) = {1 — ¢a(s)} — {1 — ¢ul—=B + (n + DH]}e"" "% 4 ¢
{Ga[—B + (n + 1)H] — Ga(s)}.
The relation (9) may be used to eliminate the constant C, from e,(s; ) to obtain
ea(s; 0) = {1 = ¥ul8)} — {1 = ¢ul=B + (0 + DH]}' """
(16) . Gals)
G.[—B + (n + 1)H]’

The inequalities (10) result from the requirements e,(s; 8) < 0 and eq(s; 6) = 0,
respectively, enforced over the interval of definition of e,(s; 6). The definitions
(12) are easily derived by setting s = —B + (n + 1)H — z and assuming that
8, = exp(—AA). This last assumption is always justifiable in practical cases.

—B+4+nH £s< —B+ (n+ 1)H.

3. Exact solutions of (6). Exact solutions for the integral equation (6) may
be found by a modification of the above-described technique. Omit the final
form y¥,(s) in the definition of ¢.(s; 6) and choose n large enough that

—B+nHzZA>—-B+ (n— 1)H.

For example, if, for some integer L, A + B = LH, choose n = L. A relation
comparable to (9) is found:

Cne™G—B + (n+ 1)H] =1, A+ B = LH.

This determines C, . If A + B = (L + v)H where Lisanintegerand0 <» < 1,
a more complicated relation is found for the determination of C, .

These exact results are almost useless for practical determinations of decision
boundaries to effect desired risk probabilities. The formulas are so nearly inde-
terminate that the writer obtained absurd results from them using modest
computing facilities. In comparison, it will be shown in later sections that quite
accurate determinations of decision boundaries may be made easily by use of the
approximations ¢.(s; 6, C).

The method of derivation of the function (8) may be of interest. From well-
known theory, the integral equation (6) has a unique, continuous solution on
—B < s < A. From the first form of the equation it is obvious that on the
subinterval —B < s £ —B + H, Pi(ms; 8) = 1 — C exp(s + B — H) for
some choice of C. Differentiation of the second form of the integral equation leads
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to the differential-difference equation

2 pyms; 0) = Pams; 6) = —Pim(s — H); d,
valid over —B + H = s < A. The change of form of P;y(ms; 6) from any inter-
val =B + (k — 1)H £ s £ —B -+ kH to the next is easily determined from
this equation and the continuity requirement. Finally, the form (8) is simply
an expedient combination of the form for the exact solution and the function
¥a(s), which was studied in [1].

For sequential tests on the mean occurrence time of a Poisson process with a
continuous time parameter, Dvoretzky, Kiefer, and Wolfowitz [3] found a
differential-difference equation similar to that above and exact formuias for the
operating characteristics of the tests that were of the same structure as the exact
solution indicated above for the integral equation (6). Their discussion can be
interpreted in a manner to apply to sequential tests on the mean of an exponen-
tial population. Anscombe and Page [2] show how this is done and indicate
another derivation of the quoted results of Dvoretzky, Kiefer, and Wolfowitz.
These papers do not consider the problem of obtaining useful approximate

results.

4. Remarks on the approximation of P;(0; 6;). As in Wald [6], it is usual to
start a sequential probability ratio test of 6, versus 6; at o = 2z = 0. The de-
sign problem consists in the determination of the boundaries @ and —b to achieve
preassigned probabilities

a = Py0;6,), B = P:0;6),

of the first and second kinds of error. Easy success in this problem will depend
on two things: (i) a choice of n in (8) small enough that the starting point s, = 0
lies in the subinterval —B + nH = s < 4 of validity of the simple form ¢.,(s)
of ¢.(s; 6), and (ii) a choice of n large enough that the bounds ¢.(se ; 8, U) and
¢.(s0 ; 0, L) are close enough together to give the accuracy desired in the test.
Explicit calculation of the values of the constants defined in (12) must be done
numerically if n > 0. Sample calculations performed by the writer indicate that
for a given set of values of a, b and s, , the difference ¢a(so ; 6, U) — ¢n(s0 5 6, L)
decreases with increasing n or with decreasing r. The computational difficulty
in obtaining needed values of 8, and C, increases rapidly with n. It appears then
that a good rule is to use the smallest value of » which will provide the accuracy
desired. As a rough guide, the writer’s experience has been that the choice n = 2
will usually give bounds for P;(0; 6;) that differ by less than one per cent; for
the choice n = 3, the bounds usually differ by something less than one tenth of
one per cent. Both of these estimates of accuracy are based on values of r be-
tween 1.0 and 2. The choices n = 0, 1 are quite poor unless r is near unity.
After a value for » has been chosen, either by the rough suggestions given
above or by actual computation of the series of bounds for Py(0; 6.), either the
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upper or the lower bound or any value between them may be used as an approxi-
mate formula. Since the extrema required in (12) must be calculated numerically,
the continuous approximation given by use of (13) seems simpler to use. With n
chosen so that the simple form y,(s) of ¢.(s; 62) is to be used at s = 0, it is clear
that the value given by the continuous approximation will lie between the
corresponding upper and lower bounds.

The approximation ¢,(s; 6, , C) is simple to calculate and is quite accurate.
It is suggested here as a practical compromise approximation to be used in most
designs. A brief table of data to facilitate the study of ¢:(s; 6:, C) and the cor-
responding bounds is given in Table 1.

TABLE 1
Data for the computation of P1(0; 6,)
6 = 0s, m=m=r—1, A=M=r—1, H=H:= (logn)/(r — 1)

r Hs exp (—Hi) Q:(Hs; 03)/r2 log [Q:(Hs ; 03)/r%]
1.01 .995039 .369709 1.01343 .013341
1.05 975804 .376889 1.06758 .065393
1.10 .953102 .385543 1.13626 127741
1.15 931747 .393865 1.20602 .187324
1.20 .911605 .401879 1.27682 .244376
1.25 .892576 .409600 1.34863 299090
1.30 .874543 .417053 1.42142 .351658
1.40 .841180 .431202 1.56985 .450982
1.50 .810930 .444444 1.72191 .543433
1.75 746155 474187 2.11714 .750023
2.00 .693147 .500000 2.53198 .929003

6. Approximation of P3(0; 61). Approximate formulas and bounds for P(z; 6;)
are to be found from the identity Py(z; 61) = 1 — Py(z; 6,) and the results given
in Section 2 for P; . Clearly, P2(0; 61) =21 — ¢,(0;6,,C)and 1 — ¢,(0;6,, U) =<
Pz(o; 01) § 1 - ¢n(0; 0 , L).

For the case § = 6, , one findsthatm =my =1 — (1/r),A\ =M= (1/r) — 1,
and H = H, = rH, . It is easy to show that Q.(rz; 6:)) = 1/Q.(x; 62). From this
it follows that

5”(01 , U)e_)‘l(B_”H‘) — 1/51;(02 , L)e—)\g(s—nlg,)’
5”(01 , L)e—)\x(B—nul) — 1/5n(02 , U)e—XQ(B—nH,).

These relations give the values of 6, and C, needed for bounds on Py(z; 6:) in
terms of those used for bounds on Pi(zx; 6;). Clearly, the same reciprocal rela-
tionship may be used to obtain 8,(6; ; C') and the corresponding value C,(6; ; C)
for a continuous approximation to Px(z; 61).

6. Approximate decision boundaries. Page [5] shows a simple method for an
improvement of Wald’s approximate formulas for setting the decision boundaries
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and estimating the expected sample size of a sequential test. He illustrates his
method for a normal population. Epstein and Sobel [4] give improvements over
Wald’s formulas for the specific case of a semicontinuous sequential decision
procedure on the mean of an exponential population. The latter authors study
also the accuracy of their results by means of upper and lower bounds on the
operating characteristic and expected sample size for their specific test setup.
This line of attack will be continued in the sections that follow here by using the
continuous approximations for P;(0; 6z) and P(0; 61) obtained above to derive
a series of simple formulas of increasing accuracy for setting the decision bounda-
ries @ and —b to achieve preassigned risk probabilities « and 8. The correspond-
ing upper and lower bounds for P1(0; 6z) and P3(0; 6;) will be used to establish
the accuracy of the formulas for ¢ and —b.

Assume that, for a chosen 7, the boundaries will be such that —b+ nh <
0 < a. One then has the equations

07\252 _ 6—7\:42 . e)\;H; _ e—)qu
B= o= %=1 T 5E0 —enn

to be solved for a and b. By (13) and the remarks in Section 5,

(16)

3u(625C) = € PIPQu(Ha; 6) = SQu(Hs; )

™ ’

n —b
. — M(Bi—nHD . - re
31»(01 ) C) / Q”(H 2 02) Q———n (H2 ; 02) y
where
Q (H . 0) = Gn{ —'Bz + (’n + l)Hz}e(H.M)Hz - Gn{ —'Bz + an}
mn Go{—B; + (0 + 1)Hs}e®* — G.{—B: + nH3}

and

M= 1 4N,  Adi= (=1, NBi=(-1% i=12
The solution of (16) for a and —b is readily found to be

a = log 8 _ log r,

17
— b =log B4 log Qu(Hz, 62) — (n + 1) log 7.

l—«a

The assumptions made in deriving (17) are easily checked in any special case.
Wald’s results [6] were the first terms on the right in (17). It is remarkable that
go simple a modification of his results should suffice for the accuracy that will
be indicated in Section 8.

Tt might be noted that the results (16) and (17) could have been stated in terms
of a general starting point z, for the test if —b + nh < xo < a. The effect would
have been to replace @ and —b by @ — x and —b — o, respectively.
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A judgment of the accuracy of (17) in any given example is easily obtained by
computing bounds upon the true values of P,(0; 6:) and P»(0; 6,) generated by
the use of (17). One finds

n+l a n nt+l a

ret —r et — "
L~ " < po: <! =7
e““’Kl -t 1(0, 02) = MK, — rn’
( 18) eb Kl r"+1 eb K rn+1
- . y —
re*PK,; — rrtl = P0;0) = re* K, — riit?
where

K, = max Qu.(z;6:), K, = min Qu(z;6,).
(0,H2)

(0,H2)

These bounds are to be evaluated by use of the results

« _1-—p8 e _ (1 —a)(1 — B)"
(19) T T T T a80.(H,; 6)

of (17) and a graph of Q.(z; 62).
7. The ASN. It is convenient to transform the integral equation (7) as follows.
The formal identity
14A—-s=1-H+ 14+ 4 -0 adt
s—H

may be written in the form

—B
1+A—s=1—H—|—f A+ A4 - at
s—H
. A
+[0+A—m*Hm,qhwg—B+m
B

A
=1—H+fH0+A—0W”“% B+ H<s<A.

From this and the equations (6) and (7), it is seen that the function
(20) R(ms; 6) = (H — 1)My(ms; 6) + 1+ A — s — (A + B)P:(ms; 6)

satisfies the integral equation

A
R(ms;0) = H — B — s —|—[ R(mt;0)e* " dt, —B<s=< —B+H,
(21) ’

A
= R(mt; )¢~ dt, —B+H=<s<A.
s—H
Equation (21) for R is quite similar to equation (6) for P; and may be treated
in much the same way. This will be indicated below. First, easily obtained bounds
for R will be given. They are probably good enough for most practical purposes.
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It is trivial to show that
H(]. _ es+IB—H)

— 7, -—Bsss-B+H.

1—e"" " <H-B-s=

It follows at once from Part (ii) of Theorem 5 in [1] that
HPy(ms; 6)

1—e#® "’

Bounds on the expected sample size are then readily obtained by use of (20).

To obtain more accurate results, proceed in the manner of Sections 2 and 3.
It is evident that on the subinterval —B < s £ —B + H, R(ms; 0) = H —
B — s + D exp(s — H + B), where D is some constant. Over the remaining
subinterval of (—B, A), R(ms; 0) satisfies the same differential-difference equa-
tion as does Py(ms; 6). An exact continuous solution to (21) may be obtained.
Approximate solutions and bounds for the solution to (21) may be found by the
technique indicated in Section 2. Since accuracy in the determination of the
ASN is not of basic importance in the design of sequential experiments, the calcu-
lations just indicated will be left to the reader who is interested.

Pi(ms; 0) < R(ms; 0) < —-B < s < A.

8. Examples. The following examples are based on the values « = 8 = 0.05
and upon two choices of r,7 = 1.1 and r = 1.5. They will serve to show the order
of accuracy to be expected and the computation needed in the use of the decision
boundary formulas (17). Six-digit accuracy appears to be useful in the computa-

tions.
ExampLE 1. 7 = 1.5 and n = 2. For this case one needs Q(x; 6;), 0 < z <

H, = 0.810930. From (11), it is easy to obtain

oy = € — ge(x)
Qx(x; 62) = @’

—Hg —H 2 —2H
1 — Hye™) + 376
gz<1}) =1+ pd ( _.2: )1 221_'26}1 ’
1 — 2H.¢ %2 4 1H}e 22

= 1 + 0.826045z + 0.287005z".

This yields the results: Qx(H, ; 62) = 3.874306 and max Qx(z; 6;) = 3.877046,
min Qx(x; 6;) = 3.855812. Formulas (17) then give ¢ = 2.53898 and b = 2.80647.
By the inequalities (18), the true values of Pi(0; 6:) and P5(0; 6:) satisty
0.04996 =< P;(0; 6;) < 0.05024 and 0.0499874 < P»(0; 6;) = 0.0500017.

As a comparison, the choice n = 1 gives ¢ = 2.53898 and b = 2.78504 and
the bounds on P;(0; 6:) are 0.05000 and 0.05166. For the choice n = 3, the
bounds on P;(0; 62) would be 0.049975 and 0.0500099.

It is interesting to note that the choice of decision boundaries from Wald [6]
would be ¢ = b = 2.94444, For these values, the bounds (18) give 0.04428 =
P1(0; 6;) = 0.04452 and 0.03269 =< P»(0; 6:) = 0.03353.

ExampLe 2.7 = 1.1 and n = 2. For this case H; = 0.953102 and Q:(H: ; 6;) =
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1.374880, max Qx(z; 62) = 1.375097 and min Qy(z; 62) =2 1.373430. These yield
the decision boundaries ¢ = 2.84913 and b = 2.91201 and the bounds

0.049992 < P,(0; 6;) = 0.050052, 0.049997 < P.(0; 6,) < 0.0500004.

In this example, the choice n = 1 might be satisfactory. It yieldsa = 2.84913,
b = 2.90703 with the bounds 0.5000 < P,(0; 6;) < 0.05043.
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