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0. Summary. The estimation of the size of an animal population is considered
for a situation where the population is stratified and only partial mixing takes
place between strata. A consistent estimate is found and its variance deter-
mined. It is shown that estimates previously given or frequently used in this
situation are not necessarily consistent and, in fact, may be meaningless. Condi-
tions for their consistency are determined. Some further statistical problems in
estimating the interstrata migration are discussed.

1, Introduction. The use of tagging procedures in estimating the size of animal
problems is now well known; also the problems of sampling such populations
so that the procedure conforms to the mathematical models used in the analysis
of the resulting data have been stressed, particularly by DeLury [4].

We recall that the simplest procedure involves marking or tagging some mem-
bers of the population and subsequently taking a sample of the population, the
sampling being random with respect to the marked animals. This procedure
and various extensions of it have been carried out on many populations, par-
ticularly on a small scale, and it has been customary to assume that where the
sampling occurred without replacement, the random number of tag recoveries
would follow the hypergeometric distribution or its various approximations
(binomial, Poisson, normal). This will certainly be true if each member of the
population is equally “catchable” and the capture of one member does not affect
the chances of capture of others.

If the experimenter has a large and widespread population under study, it
is no longer safe to make these assumptions. Thus, populations of fish in the
ocean are subject to widely different fishing intensities in different areas. Conse-
quently, if the sample is obtained from such a fishery it is hardly to be expected
that it will be random, unless there is a complete mixing of the population
throughout the differentially fished areas in the time that elapses between tagging
and sampling.

However, it is known that some animal and many fish populations are made
up of several groups [“tribes” is a word suggested by European fisheries biolo-
gists; see [1] for example] differentiated by their location. Some degree of mixing
occurs between these adjacent groups or tribes, either continuously or at in-
tervals. Hence, during the time interval between tagging and sampling, while
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the tagged animals are mixing within their groups or tribes, there may also
occur between-groups mixing. The nature and amount of this is almost certainly
unknown, and, in fact, the experimenter will often wish to analyze the tag re-
turns to cast some light on just this aspect of the population dynamics. Moreover,
in general, it is not possible to state that an animal captured in strata j had pre-
viously belonged to strata ¢, though it is usually possible to identify the tags so
that this information is available for recaptured tagged animals.

In fact, it is to be expected that in almost all extensive populations of marine
animals this is the situation the biologist will face, i.e., a population with segre-
gation by area but some mixing between areas and a population where the
different subgroups are usually indistinguishable, at least on superficial examina-
tion.

Estimation of the population size in a situation of partial mixing of this type
seems to have been first considered by Schaefer [8]; he dealt with a migrating
salmon population. An example involving stratification by area in connection
with the Pribilof fur seals has been noted in [6]. Of the many other possible
examples we note only two: the important halibut population (see [9]) and a
smaller flatfish population which has been the subject of a recent intensive
study [7]. 4

In this paper formulae are given for estimating the size of such a mixing popu-
lation in those cases where tags are put out in all strata. Estimates can be given
of the population migration between strata as well as of the total population
size. Asymptotic variances of these estimates are obtained. We also determine
under what assumptions the Petersen estimate made disregarding stratification
and the estimate proposed by Schaefer in [8] are valid in the sense of being con-
sistent. Examples are given to show further that these estimates may give
meaningless results.

2. Notation and assumptions.
N.:; = number of individuals that are in stratum ¢ at the time of tagging and
in stratum j at time of sampling,
t:;; = number of tagged individuals in stratum ¢ at tagging time and in stratum
j at sampling time,
ni; = number of sampled individuals in stratum ¢ at tagging time and in
stratum j at sampling time.
si; = number of tagged individuals, tagged in stratum 7 and subsequently
recovered in a sample from stratum j (5,7 = 1, 2, --- 7).
Sums over any subscript will be denoted by replacing the subscript by a do*
Thus,

.
£ = D t; = number of tags put out in stratum ¢,
j=1 j

/

7
ng = >~ n;; = number sampled in stratum j.

i=1
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The N;;, N.;, and N, (the total population size) are regarded as unknown
parameters, the £;,, n.;, as known parameters, the {;; and n.; are unobservable
random variables, while the s;; are the observed random variables. It is assumed
that all the parameters are positive.

Let S be the r X r matrix having s;; in the 7th row and jth column, 7 = 1,
cee,r, 7 =1,---,r;let| S| be the determinant of S, and let

n, = (n.l ,n.Z,n.S, M ,n,r)

t, (tl ) t2. ) t.8 y "% tr.),

<N> _ (zv.l R. zv.,>
n) \nin.’ ’n,/

Our model may be thought of as consisting of r urns, where urn ¢ contains
N;. marbles of which ¢;. have been marked, a different mark being used in each
urn. After stirring the marked marbles in each urn, an unknown number of
marbles (possibly zero) are placed in each of the other (r — 1) urns. After this
process, N ; is the number of marbles in the jth urn and N;; is the number of
these which were originally in the 7th urn. After again stirring the marbles in
each urn, a sample of n.; marbles is taken from the jth urn; of these, s;; are
observed to have been marked originally in the sth urn. From the known values
t:., n.j, and s;;, it is desired to estimate the total number of marbles in the r
urns, i.e.,

It

r r
N.=2XN.=2N,,
$==l =1
It appears to be useful to set out in detail the assumptions that need to be
made for the determination of any estimate and, in particular, to distinguish
those which relate to the experimenter’s actions and those which relate to nature.
The minimum possible assumption that could be made seems to be

Ny t.'j
N £Y)

This expected value would occur if a random sample is taken within the 7jth
substratum.

However, a model constructed on assumption I appears to be inadequate to
yield an estimate of N.., for it involves 3* unknowns (ni;, &, Ni’s) and
there are only 7 observable random variables (si;) plus 2r side conditions
(Xini; = n.;, 2iti; = t:.) to determine these. The information is inadequate,
except in case r = 1, so that it is necessary to make further assumptions to set
up some structure relating the various substrata. In this respect it is sufficient
that

L E(sij | nij, ti;) = for all 7, 7.

II. E(ny) = n; <%£> for all 4, j with the distribution of #; arbitrary.
oJ
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Assumption IT would be satisfied if the n.; marbles are taken from the N _;
in the jth urn by a random sampling procedure.
It is seen that I and II together imply

t.:

n.j ﬁ for all z, 5.
«J

1. E(si; | ti) =

Assumptions I and III also imply II, but IT and III do not imply I. For example,
consider IT and III holding together with E(s;; | nij, t:;) = 8:5n45 + eynis . Then
it is trivial to determine 8;;, e;; for each E(n?,) so that this assumption, together
with II and III, is consistent. Consequently, it follows that III alone does not
imply I and IT and is therefore a weaker assumption. However, in an actual field
situation it is likely that III will be satisfied only if I and II are.

It can be seen that assumption III can be satisfied even though no mixing of
the marbles took place before redistribution; in other words, the validity of the
procedure does not depend on any assumption on the behaviour of the animals
after tagging within their respective strata or on the effect of tagging on the
migration pattern, provided that a random sampling procedure can be used.

If stratification is disregarded, then the usual estimate of N, is

n.t.,
(l) NO = T )

although for small s, ,

_ (. + 1.+ 1)
2 M= s 1

is preferable (see [3]).
The estimate proposed by Schaefer in the notation given here is

. r r X ti. ”
(3) M= (7‘J_‘°*_f>,
i=1 jm=l 8i. 8.5
though in the derivation of this estimate Schaefer found it necessary to add some

further assumptions.
An estimate based only on assumptions I and II, or II1, is derived by observing

that we can write

(4) E <Xr: 8ij %) =1,

i=1

1,2,---,r.

o,
It

The set of equations

r

(5) Z&ji’%‘j:ti‘, i=1)2)"'7r,
J
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form a set of r equations in r unknowns which has a unique solution provided
that | S| 5 0. The estimate of N.. is then simply the sum of the N.; . The solu-
tion of (5) and the estimate of N .. are most simply expressed in matrix notation:

(6) @)’ = St
¢)) Ny = 087t

3. Consistency of the estimates. The distribution of the s;;, depending as it
does on the random variables ¢;; , is complex. We can make additional assump-
tions as to the behaviour of the ¢,; and will do so later. If nothing is assumed
about the #;;, then it appears that it is possible to study only the consistency
properties of the proposed estimates.

The property of consistency of estimates based on samples from a finite popu-
lation has been variously defined. Following one such usage, an estimate N of
N..would be called consistent if N = N.. whenever all n; = N ;, i.e., whenever
the sample taken without replacement exhausts the population. This usage
makes the definition particular not only to the finiteness of the sample, but also
to the method of sampling. Moreover, it is certainly satisfied in this problem if
whenever s;; = {; for all 4, j, N = N., and it is easy to construct estimates
that satisfy this condition and are otherwise meaningless. Finally, from a practi-
cal point of view, in the study of populations that number several hundred
thousand or several millions, it is unreasonable to think of a sample equalling
or nearly equalling the population size.

Yet at the same time it is possible that the samples may be very large—e.g.,
in the study noted in [7] it was of the order of 100,000 or roughly one-fifth of
the population. With samples of this size, it is to be expected that if the samples
are random the law of large numbers should be applicable.

Hence, we consider the case n.;, N.; = «, n,;/N.; — \;, and

Sij E(si|ts) _ ng _
——)P tij N_j >‘J)

and say that N is a consistent estimator of N.. if under these conditions
N/N.. -, 1.

This assumption on the asymptotic behavior of the s;; is certainly fulfilled
if given ¢;; the conditional distribution of the s;; is multihypergeometric (or
multinormal). In terms of the sampling procedure, it may be said that this
situation is to be reasonably expected if the subarea is sufficiently small so that
the sampling is uniform over it and each member of the population in it has an
equal chance of capture. Or, again, it is a reasonable assumption if the subarea
is so small that the N.; members of the population may be expected to mix
freely and completely, regardless of the sampling uniformity.

The degree of within-area mixing is a pervasive problem in population esti-

i
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mation—this and the effect of tagging on the subsequent behavior of the tagged
animal. Ultimately, these questions can only be answered by using independent
methods of population estimation. Still, it will always be important to analyze
the data from any experiment to determine whether there is internal evidence
to support the assumptions necessary for the population study. Some sugges-
tions in this direction were made in [3] for a different tag-sample procedure,
which might be adapted to this situation. Some further considerations along
these lines are elaborated on in Section 5.

Returning, then, to the question of consistency, under the conditions specified,

No . e n.t. A
~—— tends in probability to > LN Sy

N.

where a; = ¢.j/t.., A\ = n./N...

For arbitrary ¢;;, and hence also ¢.;, this ratio equals 1 if and only if A; =
\ or n,;/N.; is the same for all strata, i.e., if the sampling is proportional to
the population size in all strata.

Now consider N,/N ... This ratio converges in probability to

D tijtim; ’
().

P t.jztia N

N.
which equals 1 for arbitrary ¢;;, provided n ;/N.; = \; is constant, i.e., pro-
portional sampling is required in all strata.

Turning to Ns, it is seen that, substituting E(s;;) for s;; and N ; for N ;,
equations (5) are satisfied. Hence, if |S| # 0, the uniqueness of the solution of
this set of linear equations ensures that N is a consistent estimate of V.. .

It is a trivial exercise in arithmetic to construct examples to show that the
estimate Ny , may be absurd for all values of the random variables when n_;/N ;
varies with 7. One such is given by the case where r = 2 ¢, = &, = ny = n,
and all animals migrate from stratum 1 to stratum 2 during the experiment
except those tagged in stratum 1. Then it is seen that

(2t:) (2t.)?
My = PGl _ <2
T it e b Fsmo

for all observed sy, .

This is a pathological example, but perhaps it is not so unreal as might appear.
Migration to stratum 2 may be normal behavior, but it is quite possible that
tagging may produce abnormal behaviour such as failure to follow a migration
instinct. In any case, it seems undesirable to use an estimate that may be mis-
leading even for larger and larger samples, unless there is good reason for sup-
posing that proportionate sampling has occurred.

In the example above, if the estimate N, were used, it would be satisfactory;
it may be checked that N, is consistent if ¢;; = 8;,t;. , where 8;; is the Kronecker
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delta. While general examples might be given to illustrate the pathological
behaviour of N; (though these, as well as a general study of the sampling proper-
ties of the estimate, are made more difficult by the presence of the random s;; in
both numerator and denominator), we content ourselves with a simple numeri-
cal example.

Letr = 2. = t,, = ny = np = 1000; N;. = 100,000, N, = 2000; suppose
now that all tagged animals in area 1 migrate to area 2 but no others do. On
the other hand, the area 2 animals distribute themselves in the two areas equally.
Then Ny = 99,000, Ni» = 1000, Na = 1000, Nz, = 1000. If sy is zero, N, is
undefined; with probability >0.99 however, s, > 0, in which case N, is (again
with probability >0.99) less than 10,000, whereas N.. = 102,000.

4. An alternative model. It has been noted that from some points of view the
operations of tagging and sampling in these experiments are dual operations. It
might then be thought reasonable to make assumption I plus assumption IT’

() =t N

8 for all 7,7

with the distribution of n,; arbitrary. )
I and I’ together imply a parallel to III, viz., III':
E(si; | nij) = ta. %z—’

Assumption III requires that, on the average, in the sample of size n_; from the
population N ;, the various tagged groups are proportionately represented.
The dual assumption ITI’ makes the same requirement, but treats the tagged
group as the sample and the subsequent recovery as the property of being marked.
This appears to be a less reasonable practical assumption in that it requires
predicting the future behaviour of the animals marked.

With respect to the urn model, this assumes that the ¢;-marked marbles are
completely stirred before any marbles are transferred to the other urns, so that
in choosing the marbles to be transferred there is no preference for marked or
unmarked marbles. Although this does not require stirring before sampling the
N .; marbles, it does still require that there be no preference for marked or un-
marked marbles in this final sample.

It is of interest to note that whereas no effect due to tagging must usually be
assumed, I and IT put no restriction on possible differential migration between
tagged and untagged fish. Assumptions I and II’, however, do require that the
migration pattern into the different recovery strata be the same for tagged
and untagged fish.

From III’ a set of equations to yield estimates of the N, can be written down.
They are

8) isij N =n; (G=12,---,7)

i=1 173




382 D. G. CHAPMAN AND C. 0. JUNGE, JR.

and

(9) Ne=2 N =t(8)"'n = n'S” 't,
fa=]

the same estimate as derived in the first model. If we further assume that as
ti.y Ni > o, £ /N; = p; (8:5/n4;) tends in probability to E(s;; | nij)/ni =
t:./Ni = u;, then N, 3 is a consistent estimator of N,

However Ny, N, will not necessarily be consmtent estunators of N.. unless
t;/N: = pforalls = 1,2, .-, r. There may be special values of the random
ni; (or in the earlier model, of the random ¢;;) for which Ny, N, are consistent.
Thus, in this model N: is consistent if n;; = 8;n.;, which would, in general, be
true only if there were no intermixing (i.e., Ny; = 0 if ¢ ¢ 7). In this case N_.
is the sum of r separate subpopulations Ny; ({ = 1,2, --- , r) and the estimate
R reduces to the sum of r estimates of the form of ]V 0. JV s also reduces to the
same form in this special situation.

It may be thought that Ny would be a consistent estimator, if both 7, ; and
ti., > © as N; , N ; — o with ¢; /N, = p;, n.;/N.; — \j and if assumptions
I, II, and II" hold. N, will then be consistent if all u; are equal, or all A; are
equal. Consider, however, the case where neither of these is true. Assumptions
I, II, and II’ imply

N.N;’

and consistency of N, under these circumstances will hold in general only if
N;j/N:N.; = constant for all ¢, j. This condition, which means that there is
random or “independent’” mixing between the various strata, will be considered
in Section 8. It has been noted that equations (5) or (8) may be solved only if
S is nonsingular. In many cases the nature of the situation dictates that S be
nonsingular. If stratification is with respect to time of migration and the time
periods are defined so that an animal marked in any period 7 cannot be recovered
in a period where j < ¢, then s;; = 0 for all j < 4. Hence, § is nonsingular pro-
vided that no s;; = 0; it will thus certainly converge in probability to a non-
singular matrix.

In cases of a real migration or mixing, usually N;; will be much larger than
N;; (j # 1), so that again in large samples |S| will be not zero. The fur seal
study [6] already referred to is an example.

In general, S’ will converge in probability to

(10) E(si)) = tiny

Fn.l n.1 . n.a ]
N, tu, N, o1, ' N, tr
N2 n.2 n.2
N.ztu’ Nztn’ ’ N.ztrz ’

..........................
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which is nonsingular provided 7' = (#;;) is. The model and limiting conditions
are those associated with assumptions I and II. If, in addition, II’ is made and
ti/Ni. — p; a8 ti., Ny, — o, then S will converge in probability to a matrix
which is nonsingular if the matrix (¥;;) is nonsingular.

Whether it is possible to construct a test of the hypothesis that (V;;) is non-
singular remains an open question. One case of singularity which has a simple
biological interpretation is that associated with the condition

(11) Nij « NiN ;,
i.e.,, the random mixing just referred to.

5. Variance of N;. To derive the formula for the asymptotic variance of
N it is necessary to make additional assumptions on the distributions of the
random variables involved. To this end we make the following assumption IV:
The distribution of the #; and the conditional distribution of the s;; given #;
are multinomial with expectation given by II’ and III.

It might be more reasonable from a practical point of view to assume that
these distributions are multihypergeometric. In this case we here neglect the
finite sampling corrections.

It is now elementary to derive the variance of each s;; by working with condi-
tional expectations. In fact,

2o ) — t.',n,,'Nij[ X ( - E’_’) — & l’f_]
(12) o*(s:7) NoN 1+ N, (n; — 1 (1 k. N.N,]J

i N.
Also,
n.'ta.tb.Na N j
(13) 0 (Saj Sb7) = —W’ a # b,
and
(14) o(8ai%;) = 0, 1.
From theorems on matrix differentiation,
(1) ~Ns _ g, s,
3Sap

where I is the matrix with 1 in the abth place and O everywhere else. This
reduces to ‘
_Bﬁs_( S_)< S )
(16) 55; - ]Z no." ISI Z IS’ t‘l. ’
| S| being the determinant of S, S;; the signed cofactor of s;; .
Under the assumptions,

b i Ny

17) E(siy) = NN,



384 D. G. CHAPMAN AND C. O. JUNGE, JR.

and substituting E(ss) for se , it is readily seen that
(18) (‘ﬂvs) =N, Z_V_”

982 lo. Ma

Now, as usual, terms of second and higher order in the Taylor expansion of
N; may be neglected in the limit, i.e., as ¢;. , n.;,, Ni. , N.j— . Then the asymp-
totic variance of N is easily calculated to be

ZZ NN N, [1 +’]Vl- (n; — 1) <1 N _ t. L]

T 7 tumg N, N:N,;
N4 Nb;
D IPIP IR
i a b n.;

We write (19) in this form, in which it will be used, although from a mathe-
matical point of view under the conditions stated, (19) must be infinite. The
requirements of mathematical rigor can be met by considering the asymptotic
variance of N3/N... The second term in this variance will be much smaller
than the first. In fact, for most applications the approximation

20) AWy = 3 S NuleNy

fmm]l jmml t n,

(19)

will be sufficient.

Since the estimates Ny and N, may not be consistent if proportionate sampling
(or tagging) does not occur, these are not in competition with N in general. If
proportionate sampling does occur, then the several samples may be regarded
as a single random sample from the whole population. In this case N, is the
maximum likelihood estimate and hence optimum from an asymptotic point
of view.

Assumption IV is much stronger than any of the earlier assumptions and
opens up the possibility of obtaining maximum likelihood or minimum x* esti-
mates. However, the modified minimum x* estimates obtained by the use of
Lagrange multipliers would require the solution of #* 4 2r linear equations.
Even for r as small as 3 this is hardly feasible for general usage in the absence of
special computing facilities. Whether these procedures could be simpliﬁed or
other estimates with optimum properties found, is unsolved.

With Assumption IV it is seen that for the large sample case with n_ ;/N.; —
0, t;/N;. — 0, but n_it;/N.;, n. ;. /N;. remaining finite, the estimate N; is a
maximum likelihood estimate. Even in this situation it is not to be expected
that an unbiased estimate of N ., exists, since such an estimate would have to
be a nonlinear function of the s;; . That this is in fact so may be proven similarly
to the situation in the case of a single sample from a single strata as was done in
[2], by an appeal to the theorem of Barankin [1] on necessary and sufficient condi-
tions for the existence of unbiased estimates with finite variance.

When Assumption IV is made, further questions are opened up, viz., what
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practical sampling procedures may be expected to yield sample observations
which satisfy this requirement. It was indicated that uniformity of the sampling
over the subareas or uniformity of behavior within the subareas could be suffi-
cient to ensure the conditions that Vs be consistent. Assumption IV, , however,
requires even more, namely, that the migration pattern of the animals be not
affected by tagging and that the migrations taken by different members be inde-
pendent of one another. Consequently, it is difficult to visualize a realistic situa-
tion where there is a priori information that IV is in fact reasonable. The experi-
menter will wish therefore to make what tests are possible on the data to
determine if it is consistent with this assumption. One such method of analysis
is to divide each of the r groups of tags.of size ¢;. randomly into ¢; sub-
groups tz (K = 1, 2, -+, ¢;). Then if Assumption IV holds,

E(suk) = ts X3 3

NNN, = Nijlixnj

and for each 7, j a x* test for homogeneity may be made. Acceptance of this
hypothesis does not confirm the validity of Assumption IV, but it does lend
support to the analysis based on it.

On the contrary, if the hypothesis of homogeneity is rejected by the x* test
for one or several subgroups, the experimenter will do well to assume that
formula (19) does not give the correct variance of N; . To derive another formula
would require making other assumptions as to the distributions involved or as
to the lower moments of the several random variables. Since there seems to be
no reasonable alternative information in this direction, we suggest instead a
method to estimate the variance of N;. For suppose all g; defined above are
equal, say, to g (i.e., each group of ¢;, tags is divided randomly into ¢ subgroups
tia, tia, y tig): Then utilizing formula (7), we can construct ¢ estimates
N O N & , N9 of N.. and hence determine an estimate of the variance of

= l/qz..,lﬁ(" with ¢ — 1 df.

The choice of the number of subgroups, either for this purpose or for the test
of homogeneity outlined above, will be strictly limited in practice; for if ¢ is
chosen too large, the subgroup ¢, will be quite small and E(s;;) =
tix(n.;/N ;) also. There will be many zeros in the matrix S and the estimates
N® will be extremely variable. With some knowledge of the extraneous variance
and of the degree of migration, it would be possible to set down working rules
for the choice of ¢. In many large-scale field experiments, the biologist will do
well to proceed in this manner until there is adequate assurance that more can
be assumed about the distribution of the ¢;;.

6. Additional strata; mortality. It is traditional that even though mortality
may occur in a population between the time of tagging and of sampling, then if
the chance of survival is the same among the tagged and untagged animals, the
Petersen estimate (i.e., Ny), based on a single random sample from a population,
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is essentially unaffected. In fact, in one case the distribution of the random num-
ber of tag recoveries remains unchanged. For let
N, N’ = population size at tagging and at sampling, respectively,
t, t’ = number of tags at similar times,

s = number of tag recoveries,

n = sample size.
If n is large relative to ¢ and hence ¢, then the usual hypergeometric distribution
for s is adequately replaced by a binomial distribution, i.e., s | ¢ is B(, n/N’).
Further, if ¢ is B(¢, N’/N), then s is B(t,n/N’-N’/N), i.e., B(t, n/N), and hence
s has the same distribution as if there were no mortality. Clearly, it will be
desirable to establish whether N enjoys a similar “robustness.”

Consider first a somewhat more general situation where there are k£ + 1
strata, in the last of which no tags are placed and no sampling is done. We can
still write E[s;;(NV .;/n.;)] = t;; , but it no longer follows that Z,_l E[s:;(N .;/n.;)]
= {;, since D ;it;; = t; . Since there are (k + 1)* essential parameters and
only k observations (no addltlonal information is contributed by n.; — D s
t;; in each sample), clearly N, cannot be estimated. Also, certainly, if we do not
trust the ¢; to reflect the behaviour of the N;, the N.;j or D s N.; cannot be
estimated. It is also easy to give numerical examples in the case » = 2 to show
that even if #; is assumed to have expectation ¢;N;;/N.. , the distribution of the
8;; may be the same for quite different values of the several parameters. Clearly,
identification is not possible.

If, however, sampling takes place in all strata, there will be (k + 1) observa-
tions and the solutions of equations (5) will lead to consistent estimates, pro-
vided |S| ¢ 0. The case where mortality occurs is related to this situation.
All strata are assumed to be tagged and sampled. Those dying form the (k + 1)st
strata so that N4, = 0. Hence, if assumptions I and II’ are regarded as valid,
then the equations (8) lead to consistent estimates of N;. for Z’fﬂ ngj =

kN, = . Hence, N.. is also estimable.

Furthermore, if an analySIS similar to that at the beginning of this section
for the simple model, is carried out, i.e., consider #;; the random survivors of
t:; with probability of survival N’;;/N;;, then the modified variance of s;; can
be obtained. The distribution is not identical with the original but the leading
(and dominant) term in the asymptotic variance formula is unchanged. This of
course assumes a binomial model for survival as well as the original assumptions
and limiting conditions used to calculate (19). If any of these fail to hold here,
replication must be resorted to for variance estimates.

Il

7. Variable number of strata. In some situations the number of strata will
change between the times of tagging and sampling. This may occur either where
the distribution is by area or by time.

Suppose there are m strata at the time of tagging or marking and r strata at
the time of sampling or recovery. Consider m > r, with assumption III holding.
The equations (8) yield m equations in r unknowns. The simplest device is the
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combination of some of the tagging periods or areas to form a system that has
a unique solution. Of course, using assumption IV, an optimum asymptotic
solution could be found by determining the modified minimum x* estimates.
If assumption III’ holds, there are r equations in m unknowns, from (11), and
no solution is possible.

In case m < r, these conclusions are reversed; i.e., no estimation possible with
assumption III, estimation possible with assumption IIT'. In general, it is reason-
able to expect that either assumptions III or III’ can be made so that estimation
of N., is possible.

8. Estimates of migration. In studies of migration, the NV;; will be of interest.
If assumptions I, II, and II’ are made, then N; and N.; (4,5 = 1,2, ---, 7)
are both estimable, estimates being determined as solutions of equations (8)
and (5), respectively. Also, an estimate of N;; is '

sslNi NJ'

t.n;

Since (17) now holds, the consistency of N;., N.; proven earlier, implies the
consistency of Ny;. It is necessary to consider the dual limiting conditions that
ni., n.;, Ni., N.; all tend to infinity.

If it is permissible to make assumption IV and further, for simplicity, that
t;/N:.— 0, n.;/N.; — 0, then by methods similar to those used in Section 6,
the asymptotic variances of the N;., N.;, and N,; may be derived.

Let

(21) Ns': =

N11N12 b Nlr
n = N21N22 N2r
erNr2 e Nrr

and 74; be the (signed) cofactor of N,; in . Then

N.j 'ﬂaJNabNa Nb
(22) A.V. (N_) e I2 > Z o et

@) av.(52) < Ly y [l el NaNe ] NN L ]

ta. M
It was noted in an earlier section that the situation
N;j <« NN ;

is of importance both from the biological aspect and from its effect on the esti-
mation problem.

Under the restrictions just noted it is easy to construct a test of this hy-
pothesis. For the s;; will be asymptotically normal and having asymptotically
zero covariances, and it follows that they are asymptotically independent.
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Thus, under the restrictions that n ; and ;. be small relative to N , an approxi-
mate test of the hypothesis of complete mixing, i.e., (11), is based on the

statistic
( ti.n.j>2
r r sij - T
$ = E N Y/

tml el t,-‘n,j

N

(29)

)

where N = n.t./s...

If the n.; are considerably larger than the ¢;, and are not small relative to
N .., this test should be used with caution, for the type 1 error may be much
larger than the nominal significance level. This is partly due to the fact that
Ny is not exactly the modified minimum x* estimate of N.. . The inflation of x*
in (14), caused by the underestimate of ¢°(s;;), is more serious. The exact vari-
ance of the s;; contains terms involving N.;, N;. , N;; which cannot be esti-
mated by the modified minimum x* method. Hence, no asymptotically efficient
estimates of these parameters exist under the hypothesis. An approximate
correction may be obtained by estimating the N ; from equations (5), and sub-
stituting these estimates in (13).

Similar x* tests may be employed to test the hypothesis that sampling (or
tagging) is proportionate in the different strata, i.e.,

H: —'1"=)_\,~=)\ forj =1,2,---,r.

For, under H, E[s;;|t:;] = Mjso that E(s;.) = M,.. Also,usingassumption IV
(actually we may dispense with the assumption that the ¢;; have expectations
given by II’), for ¢;;small relative to N ; ¢°(s;.) = t:A — »). Under H wemay
estimate A by

S

s n
A= = .
N N
so0 that the x* statistic (with »r — 1 d.f.) is
[« - 5]
r 8. — ti. &
(25) N

"5 - )]

The test for proportionate tagging is obtained by interchanging n and £ in
this formula.
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