ERRORS IN NORMAL APPROXIMATIONS TO THE ¢, AND SIMILAR
TYPES OF DISTRIBUTION® 2

» By J. T. Cav?
Unaversity of North Carolina and Case Institute of Technology

1. Summary. For the cdf’s of Student’s (f) and Thompson’s (r) distributions,
upper and lower bounds are obtained in terms of the normal edf. It is then
shown that, in using the normal approximation for the cdf’s of these distribu-
tions, the proportional errors are uniformly smaller than 1/n for all » = 8 and
13, respectively, where # is the number of degrees of freedom. Similar methods
may be used to derive bounds for cdf’s of similar types. Examples are given.

2. Introduction. Let F,(x),n = 1,2, --- , be a sequence of cdf’s (cumulative
distribution functions) such that for every fixed z, F.(x) — F(x) as n — o,
where F(z) is a cdf independent of n. From a practical point of view, it is de-
sirable to know how large n has to be in order that D,(x) = | Fa.(z) — F(z) |
be small enough so that F(x) may be used as an approximation to F,(z), although
approximations are often used in practice without much knowledge about the
magnitudes of the errors. The function D.(z) may, of course, vary considerably
for different values of n and z. But the most interesting kinds of D,(x)’s are
probably those which tend rapidly to 0, uniformly in z. In such cases, F(z)
provides for all n’s greater than some minimum, and for all z’s, a satisfactory
approximation for F,(z). Generally, however, even though there is ample
numerical evidence that as » increases D, (z) rapidly becomes uniformly small, it
may not be easy to obtain a mathematical proof.

There are, on the other hand, types of sequences of c¢df’s for which we are
able to confirm rigorously that they do tend rapidly to normality. Suppose that
a cdf has one of the following forms:

F.(z) = C’,,f (1 = 2*/n)™* de,

where C,, and m depend only on n, a positive integer. (If the integrand is 1 — 2°/n,
it should be replaced by 0 when 2° = n.) By simple transformations of the
variable of integration, upper and lower bounds are found for F,(z) in terms of
&(z), the unit-normal edf specified by (6). These bounds may sometimes be
further simplified by obtaining bounds on C,. If m/n — 1 as n — «, then
v27C. — 1, and for every fixed z, both bounds for F,(z), and consequently
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F.(x) itself, tend to ®(x). If m/n and +/2xC, tend rapidly to 1, then F,(z)
tends rapidly to ®(z) for all z. Therefore, in this case, the error in using ®(x) as
an approximation to F,(z) rapidly becomes uniformly small as n increases.
In Section 4 applications are given to sequences of cdf’s corresponding to the
Student’s ¢-distribution, the 7-distribution of W. R. Thompson [10], and the
distributions of the partial and total correlation coefficients when the variates
involved are independently and normally distributed. For most of these cdf’s,
we are able to show that the error bounds in using the normal approximation
are small, although the actual errors may be even smaller.

An application to the x’-distribution is given in Section 4.D. Similar methods
were used by the author [1] to derive upper and lower bounds for the cdf of the
sample median % in terms of its asymptotic distribution function (which is
normal). There, we also showed that if the parent distribution is normal, then,
even for samples of moderate sizes, the error is small in using the normal ap-
proximation to the cdf of Z. The cdf of Z can be reduced to one of the forms
given above by several transformations. But some different arguments are also
needed in order to get the bounds obtained in [1].

Another type of bound (also in terms of ®) is derived for the cdf’s of the
- and 7-distributions (see Equations (24) through (27)) by using the inter-
relationships between these cdf’s and their bounds obtained by the methods
described previously. In Section 5 some numerical comparisons are given of the
two types of bounds and of two kinds of approximations (the normal and
Hendrick’s [6]) for the cdf of the {-distribution.

3. Lemmas.
LeMmma 1.
1) 142z =6, for all real x,
2 1422 &0 di =
2) rZe , according as z = 0.
If x = 0, then
3) g/l — ™) 21,
and
(4) ze ™ /(1 — ) 2 1.

Proor. The function ¢ — z — 1 has its minimum 0 at = 0, hence we have
(1); (2) holds because log (1 4+ ) — = + 2°/2 is monotonically increasing for
all > —1. Substituting —2” for = in (1), we have (3), and (4) follows from
the fact that the LHS (left-hand side) tends to 1 as « — 0 and is a monotonically
decreasing function of z. (Differentiate twice).

LemMA 2. Let

_1X3:-(@2n—1) = .
balc) = 54 @n) Vn+e, n=12--,



782 J. T. CHU

where ¢ = —1. Then,

Vba(e) < 1, if ¢
> 1, ife =

1A

B (I N

)

Proor. b,(0) is known ([11], p. 351) as the Wallis product and tends to 1/+/7
asn — «. Obviously b,(c) tends to the same limit for every fixed ¢. By examining
the square of the ratio b,41(c)/b.(c), it can be shown that b.(c) is a strietly
increasing function of » if ¢ < 1, and is a strictly decreasing function of n if
¢ = % and n = 2. Hence, we have (5).

If we have a chain of inequalities, as in (7) below, of the form 4; < A, <
As £ Ay £ As, where the A’s are functions of m, n, «, or other such quantities,
the particular inequality 4; < 4; (¢ < 7) will be denoted by (7. 7).

Lemma 3. Let

(6) ®(z) = [ ’ (2m) 22 gy,

and ®o(x) = ®(x) — 3. Then, (7.12) and (7.23) hold for all m, n > 0, and 0 <
x = /n; (7.34) holds for allm,n > 0,and 0 < & < = ; and (7.45) for all m > 3,
n>0,and0 =2z < o,

\/m@o(x\/m) =< (21r)—-l/2 jo‘x (1 - zz/n)m/2 da

@ £ Vn/m@(xv/m/n) < (2m)" j: 1+ 2/n) ™ dz
< Vn/(m — 3)&(z\/(m — 3)/n )

Proor. It is easy to see that (7.23) and (7.34) are immediate consequences of
(1). Now use the transformation

(@) = [nlog (1 + 2/m)"",
so that

fx A+ 2/n) ™ de = fov(z) exp [— (m — 3)v*/2n]h(v/\/n) dv,

where h(z) is the LHS of (4). By (2) and (4), h(v/+/n) £ 1 and v(z) < z. Hence
we have (7.45). Finally, (7.12) can be obtained in a similar way by using (1)
and (3) after applying to the integral of (7.12) the transformation

u(z) = [—nlog 1 — 2&/n)]"

Lrmma 4. Suppose no is a fived integer, and for every integer n = no,
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®) Fo@) = Cn [ (L /)™ de

is @ cdf, where C,, and m depend only on n and lim,., m/n = 1. (If the integrand
is (1 — 2°/n)™"”, it should be replaced by O whenever | z | = \/n.) Then, for every
fixed x,

where ®(x) s defined by (6).
Proor. By Lemma 3, we have lim,.., C, = 1/4/2x. Using the same lemma
once again, we obtain (9).

4. Normal approximations. We showed in Lemma 4 that if a cdf is of one of
the types (8), then it tends to ® as n — . In this section we shall use Lemmas
2 and 3 to prove that for several well-known sequences of cdf’s of these types,
the “‘speed” of approaching the limiting cdf is “uniformly rapid.” Therefore,
in using ®(x) as an approximation to these c¢df’s, the error is small for all values
of z, if n is greater than a certain minimum.

A. t-distribution. The cdf of the ¢-distribution with n d.f. (degrees of freedom),
n =12 ---,1is given by

(10) F.(z) = f_x an(l + &/n)~ "2 gy
where
(11) an = (nm)’r (’3-‘%‘—1> /T(n/2).

It is well known that as n — o, F,(z) — ®(z) for every fixed z, and that the
“speed’’ of approaching the limit is rather fast. In fact, the normal approxima-
tion is often used in practice when n = 30. We shall derive for F,(z) upper and
lower bounds in terms of ®(z), then show that the proportional error in using
®(x) as an approximation to F,(z) is less than 1/ for all z and all n = 8.
Applying (7.45) to Fa(y) — % and 3} — F,.(—=z) and using the fact that
&(—z) = 1 — ®(z), it can be shown easily that for arbitrary z,y = 0, andn = 3,

= @V 2mn/(n = 2)@yV (0 — 2)/n) — (=2 (n — 2)/n)].
From (7.34) we obtain, in a similar way,
Fu(y) — Fu(—2)

Z aV2mn/(n + D@YV (n + 1)/n) — (=24 (n + 1)/n)].

Using I'(z + 1) = 2'(z) and I'(3) = /7, it can be seen that for any ¢ = —1,
aom = bu(e)Vm/2m + 2¢) and tzmy1 = v/ (m F ¢)/@m + 1)/(wb.n(c)), where

(12)

(13
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m = 1,2, --. . Letting ¢ be ¥ and % in turn, we obtain, by (5), vV 2wra, <
Ven/2n + 1)ifn =2mand < /1 —$nifn=2m+1,m=1,2,--- .

In general, for n = 3,

(14) V2ra, < /1T = 3n.

Likewise, letting ¢ = % and 1, respectively, we obtain \/27a, > v/n/(n + 1)
ifn=2mand > /1 —Inifn=2m+ 1, m = 1,2, --- . In general, for
n =1,

15) V2ra, > \/n/(n + 1).

(Direct comparison shows that (15) holds for n = 1.)
From (12) through (15), we have, for arbitrary z, y = 0, and » = 3,

Fo(y) — Fa(—2)
= V(T =3)/(In — D@V (0 — 2)/n) — &(—av/(n — 2)/n)],
Fo(y) — Fu(—2)
2 (n/(n + )@@V F D)/n) — &(—2zv/(n + 1)/n)].

The proportional error in using 4 as an approximation to B is defined to be

(16)

a7)

(18) E=|(B/4) — 1]

Now, omitting v/1T — 2/n < 1 and A/1T + 1/n > 1 in the arguments in the
&'s of (16) and (17), we see that E is not more than the maximum of
A/ (n — 3)/(7n — 14) — 1 and 1 — n/(n + 1). For simplicity, we may state
that E < 1/nfor all n = 8. The actual values of E are often much smaller than
1/n. For example, if n = 30, and y = = = 2.042, then F,(y) — Fn(—2z) = 0.95
while &(y) — ®(—z) = 0.9588, so E = 0.0092. Nevertheless, the bound 1/n is
independent of « and y, and small enough to justify, in a rigorous manner, the
use of the normal approximation, provided that n is not too small. More nu-
merical comparisons are given in Section 5.

B. Thompson’s v-distribution. The cdf of the r-distribution with n d.f. is
given ([2], p. 241) by

(19) Gu(z) = f—\/; an(l — 22/n) " 0" de,

where | z | = V/n, an = (nr) ™’ 1'(n/2)/T((n — 1)/2), andn = 2,3, --- . For
applications of the 7-distribution, the readers are referred to ([2], p. 390) and
[10]. Obviously by (11), @, = a,1\/1 — 1/n. Using (7), then (14) and (15),
we obtain for z, ¥y = 0,-and n = 4,
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Gu(y) — Gu(—2)
(20) < 6u1V/2r(n — 1)/(n — 3@V = 3)/n) — &(—av/ (v = 3)/n)]

£ V(Tn = 10)/(7n — 2D)[@@yV (0 — 3)/n) — &(—zV/ (n — 3)/n)],
Ga(y) — Gu(—2) Z 81V 21(@YV (n — 1)/n) — B(—2v/(n — 1)/n)]
(21) z V(n—1/n@yvV(n —1)/n) —#(—zv/ (0 — 1)/n)

z (1 - 1/me®@y) — (-2

The inequality (21.34) is obtained by using the fact that ®(ax) = ado(z) if
0 = a £ 1. Thus, in using ®(y) — ®(—=zx) as an approximation to G.(y) —
G.(—z), the proportional error E, as defined by (18), is not more than the
maximum of v/ (7n — 10)/(7n — 21) — land 1 — (1 — 1/n). For n = 13,
this maximum is 1/n.

The ¢- and r-distributions are closely related. If « has a {-distribution with
n df., then y = 24/(n + 1)/(n + 2?) has a 7-distribution with » + 1 d.f.
Conversely, if y has a 7-distribution with n df., then 2 = y3/(n — 1)/(n — 32)
has a ¢-distribution with » — 1 d.f. Thus, '

(22)° Fo(z) = Gupal@/(n + 1)/(n + 22)),
(23) Gu(x) = Fosa@v/(n — 1)/(n — 22)),

where F,(x) and G.(x) are defined by (10) and (19). New upper and lower
bounds for F,(y) — F.(—) and G.(y) — G.(—z) can be obtained. For example,
by (22), (20.12), and (21.12), we have

Fu(y) — Fu(=2) £ auV/2mn/(n = 2)
X @YV —2)/(n + 3?) — &(—2zV (n — 2)/(n + 2))],
Fa(y) — Fu(—2)
= 4.V 208V /(0 + 1) — &(—av/n/(n + ).
Similarly, by (23), (12), and (13), we have
Gu(y) — Gu(—2) £ a1V 27(n — 1)/(n — 3)
X @@V (n —3)/(n — 7)) — ®(—av/(n — 3)/(n — 27))],

G.(y) — Gu(—2) = V' 2r(n — 1)/n
X [@yvn/(n — 7)) — ®(—zv/n/(n — 22))].

(24)

(25)

(26)

27)
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Obviously, the upper bound (24) is better than that in (12). But neither of the
lower bounds in (25) or (13) is better than the other. (See the tables given in
Section 5.) The same may be said about the upper and lower bounds for F,(y) —
F,(—z), given by (16) and (17), and those obtained by (22), (20.13), and (21.13).
Further, the upper bound for G,.(y) — G.(—=z), given by (20.12) is better than
the one in (26). But neither of the lower bounds given by (21.12) or (27) is
better than the other. For example, the RHS of (27) is at most B(n) =
a1\ 2r(n — 1)/n, whereas the RHS of (21.12) is close to A(n) =
2a, 1\ 21®0(\/n — 1) if y = z is close to v/n. A(5) > B(5). So in this case,
the RHS of (21.12) > RHS of (27). On the other hand, if ¥y = z = 1, then the
RHS of (27) is D(n) = 2a,1V2x(n — 1)/n®(+/n/(n — 1)) and the RHS of
(21.12) is C(n) = 28,4V 21B(\/(n — 1)/n). C(5) < D(5). Therefore, in this
case, the RHS of (21.12) < RHS of (27).

C. Correlation Coefficients. Let a sample of size n + 1 be drawn from a k-
variate (2 = k) normal distribution with variates @y, 22, --- , 2 . Let r2.3..4
be the sample partial correlation coefficient between x; and x, after elimination
of the remaining variates «; , - - - , ;. If, actually, 21, - - - , o+ are independently
distributed, then the pdf of rip.s.... is (see [2], p 412) Vngan, (1 — 25)™*97
where | 2| £ 1, and n, = n — k + 2. If k = 2, then the corresponding pdf is
the pdf of the total correlation coefficient ri, . The variance of r.5...4 is 1/n .
The cdf of vV/nyrizs..x is Gn,(z), where G,(x) is given by (19). Therefore, the
proportional error in using ®(y) — ®(—=x) to approximate G, (y) — Gn.(—2) is
not more than 1/n; . Hotelling ([7], p. 196) stated: “This [the normal approxi-
mation] is in ordinary cases the most convenient method of all [methods for
evaluating G, (x)], but no suitable bound for the error is available at present.”
The bound we obtain here seems acceptable, at least when n is large compared
with k.

D. x*-distribution. It is well known ([2], p. 251) that if = has a x’-distribution
with n d.f., then both z; = (x — n)/+/2n and 2, = \/2z — /2n are asymp-
totically normally distributed with mean 0 and variance 1. According to R. A.
Fisher ([5], p. 81), the distribution of ;3 = v/22 — v/2n — 1 tends to normality
even “faster.” Let F,(x) be the cdf of any of the z;s. We tried unsuccessfully
to derive both upper and lower bounds for F,(y) — F.(—z), similar to those
given in (16), (17), (20), and (21). It is not difficult, however, to obtain just a
lower bound, in terms of &, for F,.(y) — F.(0), where y = 0; and an upper
bound, also in terms of &, for F,(0) — F.(—x), where £ = 0. The results are
simple, but not sufficient to provide complete mathematical justification for
using the normal approximation for the distributions of the z;’s.

In the following we shall show briefly how to derive a lower bound and an
upper bound, respectively, for H,(y) — H,(0) and H,(0) — H,(—z), where
H,(z) is the cdf of /2z — \v/2m, m = n — 1,5,z = 0, and « has a x*-distribu-
tion with » d.f. Exactly the same technique may be used to derive the corre-
sponding results for the x.’s. But they are less neat, and therefore will be omitted

If y = 0, then
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Hu(y) — Ha(0) = 27T (n/2) / " g g
(28) , "
= 17" (n/2)(m/2¢)™" { {[1+ 2/v/2m] exp[—2/7/2m — (1/2)2*/2m]}" dz,

where y., = (y + V2m)*/2, 2 = v/2z — V/2m, and I"'(z) = 1/T(z). Using
(2) and T(n 4+ 1) < V2" exp [—n + 14n] (see [11], p. 352), it can be
shown that I (n/2)(m/2e)™* = 1//2r for n = 4. Now, applying (2) to the
first factor of the integrand in the second integral of (28), we have, for ally = 0
and n = 4,

H,(y) — Hau(0) = Po(y).

Similarly, if 0 £ 2 £ v/2m, and n = 4, then
H,(0) — H,(—z) £ ®(x).

5. Numerical comparisons. We shall now give some numerical comparisons

of two known approximations for the c¢df F.(x) of the ¢-distribution and the
upper and lower bounds for F,(z) given by (12), (13), (24), and (25). One of
the approximations is ®(z), and the other, suggested by W. A. Hendricks ([6],
p. 216), is ®(z,), where
(29) T, = 2(@N/2m)V20/@n + 22).
In the tables given below, we choose n to be 10, 30, 60, and 120. For each n»
values of x are obtained for which 7' = F,(z) — F.(~z) = 0.50, 0.75, 0.90,
0.95, and 0.99, respectively. For each pair of x and n, we compute 4 = &(x) —
&(—z) and 4A; = ®(x,) — ®(—=x,); U and L, the RHS of (12) and (13); and
U, and L, , the RHS of (24) and (25). We then tabulate the differences between
the values of T' and the bounds and approximations corresponding to the same
n and z. For example, Dy = A — T, Dy, = U; — T, ete. We use [13] and [3]
to find the values of the ® and T functions.

Various approximations for 7' have been suggested. (See, for example, [4],
(6], [9], and [12].) Only A and A, are tabulated here. It seems that A; is a better
approximation than A, particularly if the d.f. is small. We also point out that
®(y,) — ®(—x,) > RHS of (25), where y, is the RHS of (29) with x replaced
by y, because 0 < a,\/27 < 1, ady(zx) < Py(azx), if 0 < a < 1, and for every
fixed &, n/(n + 2°) is an increasing function of n. Computations indicate that
®(y,) — ®(—z,) < RHS of (24), but we are not able to prove it mathematically.
(Using the fact that ®o(ax) < ade(x) if 1 < a, it can be shown that the RHS of
(24) > ®(y,) — ®(—x,), where z, is the RHS of (29) with 2n replaced by n
and y,, , the same corresponding to y.)

The tables also indicate, among other things, that L is always closer to T
than U, (the actual values of U, computed from (12), are greater than 1 when
T = 095and n = 10, and T = 0.99 and n = 10, 30, and 60,) and that all
the bounds and approximations tend monotonically to 7. Again, we are not
able to prove or disprove these findings.
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TABLES
T = .50
" Dy Da Dr Dy, D4, D,
10 .011 .016 .000 .001 .000 —.007
30 .004 .005 .000 .000 .000 —.002
60 .002 .003 .000 .000 .000 —.001
120 .001 .002 .000 .000 .000 .000
T=.70
n Dy D4 Dy Dy, Dy, Dy,
10 .033 .026 —.004 .003 .000 —.019
30 .010 .009 —.001 .001 .000 —.006
60 .005 .004 .000 .001 .000 —.003
120 .003 .002 .000 .000 .000 —.001
T = .90
n Dy Da DL Dy, D4, Dy,
10 .076 .030 —.023 .016 —.001 —.038
30 .023 .010 —.007 .006 .000 —.012
60 .011 .005 —.003 .003 .000 —.006
120 .006 .003 —.001 .002 000 —.003
T = .95
n Dy Da DL Dy, Dy, " Dy,
10 .050 .024 —.038 .028 —.002 —.041
30 .027 .009 —.011 .010 .000 —.013
60 .013 .005 —.005 .005 .000 —.007
120 .007 .002 —.003 .003 .000 —.003
T = .99
n Dy Da Dy Dy, Dy, Dy,
10 .010 .009 —.061 .010 —.002 —.039
30 .010 .004 —.019 .010 .000 —.012
60 .010 .002 —.010 .009 .000 —.006
120 .007 .001 —.005 .005 .000 —.003

6. Some problems. The referee of this paper mentioned several sequences of
distributions, related to the ¢-distribution and noncentral ¢-distribution and
known, through numerical investigations, to approach rapidly to normality. He
asked whether methods of this paper could be used to derive suitable bounds
for the errors in using the normal approximation for these distributions. One of
them [8] is the distribution of £ -+ ks, where & and s are the sample mean and
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standard deviation of a sample drawn from a normal distribution, and the
others, suggested by J. W. Tukey and ascribed to him by C. P. Winsor in [12],
are the distributions of (n + 2)¢/(n + 2 + ¢) and (7n/5 + 1)i/((7n/5) + 1 + ©),
where ¢ has a ¢-distribution with n d.f.

The author thinks the question is a very interesting one and hopes some
answer will be found in further research. At the present he wishes to mention
that the methods used in this paper do have some other applications. For
example, by using the transformations «(z) and v(z), given in the proof of Lemma
3, and similar ones, bounds can be obtained, in terms of the cdf of the x*-distribu-
tion with m d.f., for the cdf of the F-distribution with m and n d.f. and for the
distribution of nz, where x has a B-distribution with m and n d.f. The corre-
sponding upper and lower bounds are close to each other if n is large compared
with m.

7. Acknowledgment. The author wishes to thank William Kruskal for his
comments and suggestions. Thanks are also due to Prof. H. Hotelling for his
critical reading of the original manuscript and to Lorrie D. Sylvester for some
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