DISTRIBUTIONS OF ROOTS OF QUADRATIC EQUATIONS WITH
RANDOM COEFFICIENTS!

By Joun W. HAMBLEN

Oklahoma Agricultural and Mechanical College

General Problem. The problem under consideration is, given the joint p.d.f.
of the coefficients of an algebraic equation which can be expressed in poly-
nomial form, to determine the joint p.d.f. of the roots and their marginal p.d.f.’s.
Complete results are obtainable for the quadratic.

1. Introduction. Consider an algebraic equation which can be written in
polynomial form as
(1.1) "= En" T A En™ T =+ (=) =0,
where the coefficients, £,(¢ = 1, - .-, n), are real or complex random variables
with a given joint p.d.f. The roots of (1.1), n:(z = 1, - - - , n), are random variables
which have a p.d.f. that depends upon the p.d.f. of the coefficients. To obtain
the joint p.d.f. of the 5; it is apparent that we must consider the two cases,
when the coefficients are real and complex, separately. Furthermore, when the
coefficients are real the roots may be either real or complex and hence require
separate treatment. The case where the £; are complex random variables was
considered in a note by M. A. Girshick [1]. When the £; are real, the 5; may be
real or complex. For real »; the functional form of their p.d.f. is obtained by a
change of variables in the p.d.f. of the £; by the use of the relationships

(1.2) = m, b= mimc k= I
{=]1 <7 =1

with Jacobian, J, given by Hx; (7; — 7;). For complex 7; the treatment is
similar, but a new set of relationships must be found to replace (1.2). In this
case, we must be able to express the &; as functions of the real and imaginary
parts of the 7; separately.

2. Limitations. We can now see that there are two major problems involved
in determining the p.d.f. of the roots of (1.1) explicitly. The functional form of
the p.d.f. can be obtained without difficulty. However, we must be able to de-
termine what regions of the coefficient space will give rise to real roots and what
regions will give complex roots. Secondly, after having identified these regions
we must be able to define their transforms into the root space. At present, com-
plete results are obtainable only for the quadratic.

3. Quadratic. For n = 2 we have
(3.1) 7 —fm+ & =0,
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where £ and £ are real random variables and hence may be any real-valued,
Borel-measurable functions of real random variables.

The roots, 7 and 7., of (3.1) are random variables associated with & and
£, by the relationships

2 2
32) "1=E—21+ %“‘Ez; 772=%—-/‘/%—‘.§2

or

(3.3) ' E=m+ n, E=m- m

m and 7, are either both real or are complex conjugates. From (3.2) we see
at once that all points belonging to the “interior” of the parabola & = £ /4
will give complex roots, while the remainder of the (¢, , £)-plane, which consists
of points on and “outside’ of the parabola, will give real roots.

We now consider the joint p.d.f., f(z, y), of £ and & , where f(x, y) is of the
continuous type. By truncating along the parabola & = £ / 4, we obtain con-
ditional p.d.f.’s relative to the hypotheses & > £ /4 and & < £2/ 4. If we let
P(R) = P(t < £:/4) and P(C) = P(t, > £, / 4), then P(R) and P(C) are the
probabilities of real and complex roots, respectively, and are given by

P(R) = ffv o JEp iz amd PO = ffv o J@ dyds.

The conditional or truncated p.d.f.’s [2] are

2 2
fay|©) = /PO,y > T3 f@yl|R) = f,4)/PR),y S T
For & < £ /4, the roots of (3.1) are real and have a joint p.d.f. which is
uniquely determined by the p.d.f. of the coefficients & and & . We will let
g(v1, v, | R) denote the p.d.f. of the real roots. The functions (3.2) and (3.3)
satisfy the sufficient conditions given by Cramér [2] for a change of variables
in a continuous type density function. Therefore, we have

g1, v2 | R) = f(v1 + vz, vive) |J| / P(R)

for all v, = v, where |J| = (v, — vy).

Let g1(n1 | R) and go(v: | R) be the marginal density functions of the real roots
m and 7, , respectively. These are given by

v1 L]
gi(v1 | R) = f g1, v2 | R) dv,, and g1 | R) = f g1, v2 | R) dos.
J. vg

For & > Ef / 4, the roots of (3.1) are complex conjugates. Let m = a + g,
then 7; = a — Bi. « and 8 are defined by the functions

- - _ 8
34) a=8/2, B=4/b—,
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or
& = 2a, & =a + 6.

« and 8 have a joint p.d.f. which is uniquely determined by the p.d.f. of
frand &, f(z, y | C). Let hy(X, Z | C) denote the p.d.f. of @ and 8. The functions
(3.4) satisfy the conditions stated by Cramér [2], so that we may find hi(X, Z | C)
by a change of variables in f(z, y | C). Therefore, we have

4 mX, Z|C) = f(eX, X" + Z°) |J| / P(C)
for all X and all Z > 0, where |J| = 4Z.
Similarly, if we let ho(X, Z | C) be the joint p.d.f. of @ and —B, we will have
h(X, Z| C) = f2X, X" + Z°) |J'| / P(C)
for all X and all Z < 0, where |J'| = —4Z. »

4. Examples. Numerous cases were considered [3] to the extent of expressing
the marginal p.d.f.’s as integrals. For these cases & and & were categorized
according to type of interval over which their p.d.f. was greater than zero.
There are twelve different interval types as follows: (— «, =), (0, ), (— «, 0),
(A7 °°), (_ ©, _A), (—A, °°), (_ ®, A), (A, B), (—A’ —'B), (_A: B)’ (0, A)r
(—A4, 0), where A > 0, B > 0. The various combinations were considered using
the normal, gamma, and rectangular density functions, respectively, and as-

suming independence for # and % for convenience in obtaining their joint
p.d.f.’s. Some dependent cases were also considered.

4.1. Example. Bivariate Normal. Let f(z, y) be the general bivariate normal
p.df., n(x, y; w1, p2, 01, 02, p). Then

S 0 S AN P
g\, bz " 2n0100/1 — p*P(R) P 2(1 — p?) o1

(4.1.1) o (01 + vy — m)(vlvz - Mz) n (vlvz - Mz)z]}
o1 g3 [0

— o < v S v, — o <9y < o,

where

© z2/4
P(R) = f f n(x:y;“lill&,o'l:a'?:l’) dyd:z:
Ifweletu = (x — m)/nand w = (y — wp) / o2 we have

© 6’ (u)
P(R) = f f n(u, w; p) dw du,
where

o) = 1}7 [(oru + w)? — 4ud.
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On completing the square on w in the exponent, and substituting

w — Uup dw

t = — Y, dt = —\

VIi- ¢ Vi—p

we obtain
0 8(u)
P@ = [ [ o e (—3E + D)} dtdu,

where 0(u) = [6'(u) — pu] / /1 — p* Finally, we may write

4.12) P®) = [ o) 2l du,

where

26) = [ o0

is the cumulative normal probability function and ¢(t) is the standardized normal
density function. We must employ numerical methods of integration to find
the value of P(R) for a given n(z, y), i.e., for a given set of values for w1, p2,
g1, 02, and p.

For the complex roots we have

mX,z|C) = % n2X,X*+ 2, Z>0,

and
m(X,Z|C) = (X, —2Z]|0), Z <0,

where P(C) = 1 — P(R).
The marginal distributions of the real roots have for density functions

v1
(4.1.3) gi(vi | R) = [ g1, v | R) dvs, —o <9 < ©,

(4.14) g2:(v2 | R) = f g1, vz | R) dvy, —0 <Yy < ©,
v

On substituting (4.1.1) in (4.1.3), expanding the terms in the exponent, and
collecting terms w.r.t. powers of v, , we obtain

_ ™ (1 — v)
gl(vl I R) B ‘/0-0 21ra’10‘2‘\/ 1 —_ p2P(R)

. eXp{— 2(1—1_;2—) [mi@) -3 — 2ma(v)) -mavr) -v2 + mg(vl)]} dve,

(4.1.5)

where

mi(w) = /o —p/ o) + A = p)/di,



1140 JOHN W. HAMBLEN

TABLE 1
p=0, :E.i, =+.4, =+.6, .8, +.9
M K2 (4} (4]
0 0 1 1
3 10 1 2
10 10 1 1
3 3 1 1
10 3 2 1
- =10 3 2 1
TABLE 2
m=pr=0,01=0¢3=1
P P(R)

.9 .5237 449

.8 .5453 219

.6 .5698 161

.4 L5872 947

.2 .5873 160

0 .5890 214

-.2 .5873 160

—.4 .5872 947

—.6 .5698 161

-.8 .5453 219

-.9 .5237 449

ma(vr) -ma(v1) = Pvzl, [/ owe—(1/ Uf + o1/ o102 — pa / Ug)vl + (#1/& - puz/am),
and
my(v) = (/o1 —m/or+ pua/02)’ + (L — o)z / o3 .

If we carry out the same procedure on (4.1.4) w.r.t. v, , we arrive at

_ ° (01 - Uz)
9a(vn | B) = fvz 2ra100\/1 — p2P(R)

(4.1.6)
‘eXP{ - Q(l%})ﬁ) [m3(ve) -0 — 2ma(v;) - malve) -0x + ma(i)z)]} dv;.

Equations (4.1.2), (4.1.5), and (4.1.6) were evaluated for the various sets of the
parameters shown in Table 1 using the ElectroData digital computer of the
Statistical Laboratory, Purdue University [3]. Table 2 gives the values of P(R)
for the case p1 = pe = 0, o1 = o, = 1; a few representative graphs of the mar-
ginal p.d.f.’s, gi(v: | B) are shown in Fig. 1 for the same case. The curves
for gs(v. | R) are mirror images of those for g; , the symmetry being due to the
fact that gi(vi | B; 1, we, 01, 02, p) = go(—02 | R; —p1, g2, 01, 02, —p) and
v = —uvy, since n(z, Y; p1, p2, 01 y 02, p) = n(—2, Y5 —p1, pe ) 01, 02, —p).
The tails of the g, curves are shown as dashed lines in Fig. 1.
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Fic. 1

4.2 Example. A Gamma Type. Let f(z, y) = exp {—2z —y}, 220,y = 0.
Then

P(R) = [: [ " exp (—2 —y} dyids = 1 — 2ev/al1 — (VD] = 24,
and

gvi,v: | R) = (v‘%) exp {—i+ 0+ nw), 0=20=9,0=0= x;

m(X,Z | C) =f17%exp (—@X+X*+2)), X20Z>0;

h(X,Z | C) = #exp (—-eX+X*+2)), X=z02Zc<0.
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9g(ve[R)

' -
9:(vi|R)

[+] 1 1 1 — 2

o t 2 3 4 S
Fig.2=9,(v;|R) and g,(vpIR) for 4.2

Fig. 2

Finally,

v] 1 2 — 1
01(v1 | R) = fo 91, v2 | R) dv, = oY [% exp {—vi}

+ 1+ ) exp {—(} +2v1)}], 09 < »,
and

g2 | R) = f g1, v | R) dvy =

2i4(1 +0)%exp (— 0l + 209}, 0= < .

The frequency curves, g;(v1 | R) and gs(v; | R), are plotted in Fig. 2.
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