THE NONEXISTENCE OF CERTAIN STATISTICAL PROCEDURES IN
NONPARAMETRIC PROBLEMS!

By R. R. BAHADUR AND LEONARD J. SAVAGE
The University of Chicago

1. Introduction. It seems plausible that if the population distribution of a real
random variable is entirely unknown, then a sample from the population can
yield little or no information about the tails of the distribution, even if the
sample is obtained according to a sequential procedure. This paper gives evi-
dence supporting and clarifying this proposition.

The paper treats in some detail problems of inference concerning the popu-
lation mean p. It is shown that there is neither an effective test of the hypothesis
that u = 0, nor an effective confidence interval for u, nor an effective point
estimate of . These conclusions concerning x flow from the fact that u is sensitive
to the tails of the population distribution; parallel conclusions hold for other
sensitive parameters, and they can be established by the same methods as are
here used for u.

It is also shown that there exists no confidence band for the population dis-
tribution function such that the upper and lower limits of the band are them-
selves distribution functions; that is, no confidence band fits very well.

2. Theorems. Let & be a given set of distribution functions F, G, ... of a real
variable. Some of the theorems to be proved would be of interest even if § were
required to be the class of all distributions or perhaps all distributions F with
finite mean up. But it is helpful to recognize that the proofs require only that §
have a certain richness. Specifically, Theorem 1 and Corollaries 1 through 4
depend on the following three hypotheses:

(i) Forevery F ¢, up = [2, 2z dF exists and is finite.
(i1) For every real m, thereisan F ¢ § with up = m.
(iii) Fis convex;thatis,if F ¢ F, G ¢ F, = is a positive fraction, and H = #F +
(1 — )@, then H ¢ &.

Theorem 2 depends on hypotheses (iii) and the following:

(iv) & is closed under translation; that is, if F ¢ &, and:G(z) = F(z — h) for all
z and some h, then G ¢ &.
(v) ¥ is nonvacuous.

Some obvious examples of sets satisfying all four conditions are the sets of all
distribution functions F sueh that ur is finite; the points of increase of F are a
bounded set, or are a finite set; F is absolutely continuous and dF/dz vanishes
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outside of a bounded interval; as z approaches «, 1 — F(z) + F(— 2) = 0(z™")
foranr > 1.

Since the theorems to be proved are theorems of nonexistence, it is appropriate
that they be stated and proved for mixed (i.e., randomized) procedures—sampl-
ing, estimating, testing. They are, of course, true a fortiori for the smaller class of
pure procedures. The technique of working with mixed procedures is presented in
detail in certain publications, for example [1] and [2]. We feel free, therefore, to
handle mixed procedures rather informally, to save space and tedium.

Let X1, X, - - - denote an infinite sequence of independent random variables,
each distributed according to F; that is, Pr(X; £ 2) = F(z). Suppose that a
(randomized, sequential) sampling procedure is given, that is, a set of rules for
observing X;, X, --- one by one up to a certain stage N such that at each
stage the decision whether to continue depends (randomly) on the observed
values in hand at that stage. The given procedure, which will remain fixed
throughout the discussion, is naturally assumed to be closed, that is,

(l) Pp(N < °°) =

for each F ¢ §. Except for this condition, the sampling procedure is arbitrary.

Denote the total outcome. of the sampling procedure, regarded as a random
variable, by V, that is, V = (X1, X,, - -, X»). As already exemplified in (1),
for any event 4 defined.on the sample space of V, P(4) will denote the proba-
bility of A when F obtains, that is to say, when each X} is distributed according
to F. If ¢ is a real valued function of V, Er[p] will denote the expected value of ¢
(if it exists) when F obtains.

For any real number m, let ¥,, denote the set of all F ¢ & with up = m.

THEOREM 1. For each bounded real valued function ¢ on the sample space of V,
infres,, Erle] and supe.s,, Erle] are independent of m.

The proofs of this theorem and of Theorem 2 below are postponed to the next
section. Theorem 1 states, in effect, that even if up is known to equal one of two
given values m; and m,, the sample V cannot provide effective discrimination
between the two hypothetical values. The following Corollaries 1 through 4
exploit the close relations between discrimination, testing, and estimation to
make explicit some consequences of Theorem 1 in problems of inference con-
cerning ur. As was mentioned in the introduction, analogues of Theorem 1
(and therewith of Corollaries 1 through 4) are valid for parameters other than the
mean, and these analogues can be proved by the same method as is used in the
next section to prove Theorem 1.

Let H be the hypothesis that ur = 0 (1 e., F ¢ Fo). For any test ¢, let 8r(f) de-
note the probability of rejecting H in usmg ¢t when F obtains, in short, the
power function of . Call f a somewhere unbiased level-a test if Bz < o for F' ¢ &
and, for some m different from zero, 8r = a for F € §,, . Call ¢ a similar level-a
test if B = a for each F' ¢ &, .

Taking ¢(V) to be the probability prescribed by ¢ of rejecting H on observa-
tion of V yields this corollary.
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CoOROLLARY 1. If t s a somewhere unbiased level-a test of H, or a stmilar level-o
test of H, then Br(t) = aforall F ¢ .

Corollary 1 asserts the failure, in certain senses, of all tests of the value of y,
assuming that u exists. It would be interesting to know whether, in comparable
nonparametric situations, tests of the-existence of u are equally unsuccessful.
To be precise, suppose for example that F is the set of all distribution functions.
Let 5* be the subset of ¥ on which ur exists finitely, and let H* denote the hypo-
thesis that F is in $*. Then, does Corollary 1 hold with H replaced by H* and
“somewhere unbiased” replaced by ‘“‘unbiased’’?

Next, let I be :ionﬁdence set for ur , that is, I is a (randomized) function of
V, that has Borel subsets of the real line for its values. For any real m, let C[m]
denote the event that I covers m.

COROLLARY 2. If Pr(Clur]) = 1 — afor all F ¢ F, then Pe(Clm]) = 1 — «
forallmand all F ¢ 5.

Proor. For each m, let p,.(V) be the conditional probability of C{m] given V,
0 = p = 1. Consider a fixed m. By hypothesis, E¢lp.] = 1 — « for F ¢ ... Hence,
Pr(Clm]) = Eslpm] =2 1 — « for all F €%, by Theorem 1. Since m is arbitrary,
the corollary is proved

COROLLARY 3. Suppose that there exists at least one F € § such that Pe(I s a set
bounded from below) = 1. Then infr.5 {Pr(Clur])} = 0.

Proor. Foreachn = 1, 2, -- -, let B, denote the event that I is contained in
the interval [—n, =), and let B, denote the complement of B, . For each n, let
¢.(V) denote the probability of B, given V;0 = ¢, < ¢op1 = 1.

Now let F be a distribution in & such that I is bounded from below with
probability 1 when F obtains. By Lebesgue’s theorem for monotone sequences,
E[lim, ¢.] = lim, Eg[g,] = lim, Pr(B.) = Pr(I is bounded from below) = 1.
Consequently, lim, ¢,(V) = 1 except on a set of points V of Pr-measure zero.
Since, forany m < —n, pu(V) = Pr(m eI | V) S Pr(B, | V) = 1 — q.(V), it
follows that, except on a Pg-null set,

2) lim p.(V) = 0.

Since Pr(C[m]) = E¢[pn) for all m, it follows from (2), by Lebesgue’s theorem

for boundedly convergent sequences, that

3) lim P#(C[m]) = 0.
Now, Corollary 2 states in effect that infes {Pe(Clue])} = infees

inf,, {Pe(C[m])}. It follows from (3) that the common value of these infima is
zero. This completes the proof.

Of course, ‘“‘set bounded from above,” and, a fortiori, “bounded set” can be
substituted for “set bounded from below” in the statement of Corollary 3. But
the following example shows that it would not be enough to say “‘set bounded
from above or from below.” For all V, let I = (— o, 0] with probability } and
I = (0, ») with probability %; then P¢(C[m]) = % for all m and all F.
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Next, consider the problem of constructing a suitable point estimator for ur .
Let M be an estimator, that is, a real valued (randomized) function of V. Sup-
pose that when F obtains, the expected loss in using M is Ef[L(M — pup)] =
re(M), where L(m) is bounded from below and lim,,, L(m) = « or limg,,_
L(m) = « (e.g., L(m) = |m |, L(m) = m®, L(m) = (2 + sin m)e™).

Let p(F) be a real valued functional on §. Say that p is uncontrollable (from
above) if there exists no real valued (randomized) function of V, say S, such that
infrs {Pr(p(F) < 8)} > 0.

The following corollary shows that there is no estimatoryy M for which the
expected loss r»(M) is bounded in F, nor even one for whidh the sample gives
any clue as to the possible expected loss.

COROLLARY 4. For any estimator M, re(M) is uncontrollable.

Proor. There is no loss in generality in assuming that lim,,, L(m) = o.
Replacing L(m) by L(m) — inf, L(a), there is also no loss in assuming L non-
negative, with inf, L(m) = 0. Consider a fixed estimator M. Write Ly =
L(M — pp). Since Ly = 0, it is easily seen (a la Tchebycheff) by considering the
cases rr = 0, 0 < r¢ < 0, and rp = o separately that Pp(Lr < arp) = 1
— (1/a@) for all @ > 0 and all F.

Suppose, contrary to Corollary 4, that there exists a random variable S with
distribution determined by V, and a positive constant 8, such that Pg(rr < S) =
B for all F ¢ F. There is no loss of generality in assuming that S is always positive.
Choose and fix an o > Osuch that 8 — (1/a) > 0. Let Y = sup {m:L(m) < &S}
and define I to be the random interval [M — Y, «). Then P({ is bounded from
below) = 1 for each F. Also, for each F ¢ &,

Pe(Clur]) = Pr(M — pr = Y)

Pe(Lr = aSf)

Pe(Lr £ aS,r¢ < 8)

Pe(Lr < arp,re < S)

Pe(Lr = arg) + Pr(rr < 8) — 1
1-(1/a)+B—1

0.

v
A

v v v v
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\%

This contradiction to Corollary 3 establishes Corollary 4.

The preceding proof consists in showing that if M is an estimator such that
re(M) is controllable, then ur is controllable, contrary to Corollary 3. This
argument can also be used to show the uncontrollability of certain parameters.
Simple examples of such parameters are the variance of F, the difference between
the mean and median values of F, and the supremum of the points of increase of
F. Note that while the unboundedness of these parameters is evident when
assumptions such as (iii) and (iv) hold, verification that they are uncontrollable
is less trivial even in the case when V consists of a single observation.
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Finally, let A(z) be a (randomized) function of V taking values in the set of all
distribution functions of z. Let C*[F] denote the event that A(z) = F(z) for
all 2.

TueoOREM 2. infrg {Pr(C*F])} = 0.

Application of Theorem 2 to —X; yields with little effort a similar theorem,
dual to Theorem 2, concerning the probability that A(z) = F(z) for all 2.
Obviously these two theorems together imply a two-sided version of Theorem 2.

<

3. Proofs of the theorems. The proofs of the theorems depend on the fact that
a given distribution function F can be so modified that, while the probability
distribution of the X;’s (and therewith of V) is perturbed only slightly, para-
meters such as the mean suffer arbitrary displacements. This modification is
described in the following paragraphs, before undertaking the proofs of Theorems
1 and 2.

Let ® denote the class of all functions ¢ of V with 0 < ¢ < 1, and (for any
two distribution functions F and @) define the familiar absolute-variational
distance between F and G by

4) 8(F,Q) = i‘:g | Erle] — Eole] l .

Given F, let H be an arbitrary distribution function and = an arbitrary con-
stant, 0 < = < 1, and define the distribution function @ thus:

(5) G(z) = 7F(2) + (1 — m)H(2).

The following lemma shows that if the given sampling procedure is closed for
F in the sense of (1), and if = is sufficiently close to 1, then, no matter what H
may be, the probability distributions of V under F and G are not very distant
from one another. It may clarify the meaning and proof of the lemma to remark
that it is for this application of the lemma, not for the lemma itself, that the
sampling procedure must be closed for F.

LeMMA. 8(F, G) £ 1 — #*P(N £ k) for each positive integer k.

Proor. Choose and fix a positive integer k. Let R* denote the space of all
points 2* = (2,,2, -, z) with — < 2; < o fors = 1,2, --+ , k. For any
univariate distribution function F(z), write F®(®) = T[iu F(z:).

It will be shown first that if ' and G are related according to (5), then, for any
nonnegative function f on R®,

® 5k / (%)

(6) RmfdG =7 R(k)de .
To verify this inequality, let Yy, Yo, -+, Y&, Z1, Z2, -+, Zt, and U;,
U, --+, Uy be independent random variables such that each Y is distributed
according to F, each Z; according to H, and P(U; = 1) =1 —-PU; =0) ==
2 These inequalities are a considerable improvement of the corresponding ones in an

earlier version of the lemma, and the proof is somewhat similar. The authors are indebted
to Professor W. Hoeffding for these improvements.
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for each U;. Write W, = U,Y, + (1 — U,)Z;for¢ = 1,2, --- , k. Then W, ,
W,, ---, W are independent random variables, each distributed according to
@ as defined by (5). Let B denote the event that U; = 1forallz =1,2,--- , k
and let B denote the complement of B. Now it is straightforward to show (6);
thus,

o, J 96 = EIf(Wy, -+, W)
= P(B)E(f(Wy, -+, Wi) | Bl + P(B)ELf(Ws, -+, W) | Bl
P(B)E[f(Wy, -+, W) | B]

= TkE[f(Yh R Yk) l B]
= 7 Elf(Yy, -+, Yi)]

v

()

= 7 f dF®,

R(k)

Consider the space of all sequences X = (X1, X;, --- ad inf). Since V, the
observed sample, is by definition a (randomized) function of X, it makes sense
to speak of the conditional distribution of V given X* = (X1, - -, Xu). It
follows from a well known property of conditional expectation that, for any
function A(V) and any F,

(®) Bl = [

Rr(

Ef[h| X®] dF®,
k)

provided that Er[h] exists.

Next, let ¢ be a function of V such that 0 < ¢ < 1. Definey(V) = 1if N = k
and ¢(V) = 0if N > k. It is easy to see that there exists a function f on R®
such that 0 = f £ 1, and

) Eie-v | XP] = f(X©),
for all F. The function f depends, of course, on the given ¢ and the given sampling
procedure.

Suppose, now, that F and G are two distribution functions related according
to (5). Then,

Eglel = Egle-y)

_ f Eolo-v | X®) dg® by (8)
R(K)
= 7da® by (9)
R(K)
b ®
=7 f fdF by (6)
R (k)
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1rk jn(k) Er[¢'¢/ l X(k)] dF(It) by (9)

WkEr[?’"/’] by (8)
irle] — Erle(l — ')

2 Erlel — Ef[l — #4y]

Erlel — 1 + #*Po(N < k).

]

Thus,

(10) Erle] — Edle) S 1 — #*Pe(N S k)

for all ¢ in ®. Since ¢ ¢ ® implies 1 — ¢ ¢ &, it follows from (10) that
(11) —Eule] + Eolg) £ 1 — #'Pe(N = k)

for all ¢ in ®. In view of (10), (11), and the definition (4) of §, (F, G) £ 1 —
7 Pr(N £ k) for all k, as was to be proved.

Proor or TuroreM 1. Let m and m’ be real numbers, and let ¢ > 0 be given.
Consider a fixed F in ¥,,. Choose and fix a positive integer k such that

(12) PN > k) <e

The existence of such a k is assured by (1). Now choose and fix a = such that
0 <7 <1land

(13) 1-<e

Let I be a distribution function in & such that #m 4+ (1 — m)ux = m’ (sce
assumption (ii)), and let G be defined by (5). Then, by assumption (iii), G is in
¥, and since ug = wupr + (1 — muy = m/,Gi8in F, . Since 1 — ™Py(N S k) £
(1 = 7*) + Pe(N > k), it follows from (12), (13), and the Lemma that é(F, G) <
2 e

Since e and F are arbitrary, infg.s,,. {8(F, G)} = 0 for each F e F» . In other
words, F, is everywhere dense in &, , under the metric 8. Since m and m’ are
arbitrary, it follows (see assumption (i)) that, for each m, Fm is everywhere dense
in §. This conclusion, together with the observation that Eg[e] is continuous in F
for any bounded ¢, yields Theorem 1.

Proor or TuEOREM 2. Before the proof proper we present a line of argument
that may be of some interest in suggesting a heuristic connection between this
theorem and Theorem 1, though this line of argument makes assumptions that
are actually gratuitous. It assumes in fact that (i) obtains and that, for some
I’, the mean of A almost always exists and is finite.

Suppose, then, that the random distribution function A4 is such that, for some
Feg;

(14) — o <f zdA < =
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except for a Pp-null event. Define I = [[Z, 2z dA, =) whenever (14) is satisfied,
and I = (—, =) otherwise. Now, the event A(z) = F(z) for all z (that is,
C*[F]) implies the event © > up = [2_ 2 dA (that is, Clur]) provided only that
ur exists and is finite. Hence P(C*[F]) S P#(Clus]) for each F ¢ F. The desired
conclusion now follows from Corollary 3.

Now, dropping the assumptions (i) and (14), turn to the proof proper. Choose
and fix ane, 0 < ¢ < 1, and an F ¢ § such that F(0) > 0. The existence of
such an F is assured by assumptions (iv) and (v). For each z, let J(z) = inf
{u:Pp(4(2) < u) 2 1 — ¢}. It is not difficult to see that J is a nondecreasing
function of 2, with lim,._, J(z) = 0, lim,., J(2) = 1, and that J is also con-
tinuous from the right, so that it is actually a distribution function. Also,

(15) Pe{A(z) > J(2)} < ¢
for each z.
Now choose & such that (12) holds, choose = such that (13) holds, and choose
A such that J(\) < (1 — 7)F(0). Let G be defined by (5), with H(z) = F(z — \).
Then G is in &, by assumptions (iii) and (iv), and
(16) JN) < G,
by the choice of A and the definition of G. Hence
17) Po(CH[G]) = Pe(A(2) = G(2) for all 2)
= Po(A(N) 2 GOV)
< Po(AQN) > J(N) by (16)
< Pr(A(N) > JON) + PN > k) + (1 — o)
by the lemma
= 3e by (12), (13), (15).

Since e is an arbitrary positive fraction, the theorem is proved.

The proof of Theorem 2 does not use quite the full force of (iii) and (iv).
It is enough that for some F ¢ § and two sequences of numbers a;(0 < o; < 1)
and B;, such that a; — 1 and 8; — «, the distributions G;; such that

(18) Gij(2) = aiF(2) + (1 — ad)F(z + B))
are in §. For the dual of Theorem 2, it is required instead that 8; — — .
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