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1. Summary and Introduction. In this paper a few results (of a purely mathe-
matical nature) are obtained, which are useful for studying certain distribution
problems in multivariate analysis—e.g., those relating to the characteristic
roots of & determinantal equation ([1], [2], [5]). In particular, the results are
shown to be readily applicable to the moment problems of the sum of the roots
and the distributions of the extreme roots. Most of the results given are in the
form of certain recursion formulae for reducing special types of k-th order
Vandermonde determinants in terms of those of orders (¢ — 1) and (k — 2).
The applications of these results are given by S. N. Roy [6] and the present
author [3]. -

2. Vandermonde’s determinant. Let us first consider a type of determinant
(due to Vandermonde) which plays an important role in the development of
this paper. Denote by V, the Vandermonde’s determinant of the form

X X7t X 1
X’lﬁj X::f cee X1 1

2.1) Vo )

......................

Il

Xt oxtreox, 1

where X1, X;, ---, X; are k variables. The determinant can be shown to be
equal to the expression

(2.2) Vo = Il (X: — X)),

where J] denotes the product over the k variables. The determinant V, has
several interesting properties, of which the following will be used in this paper.

Property 1. If each of the indices of the first 7 columns of V is increased by
unity, the resulting determinant

(2.3) Vi(say) = (22 XaXz -+ X)Vo,

where Y X,X, --- X; denotes the j-th elementary symmetric function in k
variables X;, X5, -+, Xk .

Received September 28, 1955; revised July 9, 1956.

1 Part of a doctoral thesis submitted to the Department of Statistics, University of
North Carolina, Chapel Hill; work done under the sponsorship of the Ford Foundation.

2 Now with United Nations, New York. ’

1106

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to )

Wz

The Annals of Mathematical Statistics. IIKOIN

WWW.jstor.org



MULTIVARIATE ANALYSIS 1107

3. A special function and the corresponding determinant. Let us consider the
integral over the domain 0 < z; S 1, < --- = 2 S ¢ < 1, of a function given

by
k

3.1) F@, 2, -, @) = [T (241 — ;)76 H (z: — ),

=

where ¢, r > —1 and the ¢ is independent of the 2’s. It is obvious that, in view of
(2.2), I (@i — z;) can be thrown into the form of a determinant as in (2.1).
Multiply the i-th row of this determinant by 2f_;a(1 — Zp_ip) e 5+"
z =1,2,---, k), and integrate between appropriate limits, each term of the
determinant with respect to the variable it involves. Then the integral of the
function f(x, , 22, - - - , zx) given by (3.1) takes the form

z z
f ot (1 — z) e day, - - / i1 .— x)" ™ dy
0 0

................................................

z2 z2
k- t:
f (1 — z) e day - f 2I(1 — 2))" €' dy
0 0

It has to be remembered that in expanding the determinant (3.2), the order of
integration must not be changed, and hence we shall call it a “pseudo determi-

nant.”
Now let g1, ¢z, - -+, qx be real numbers greater than —1. Let us denote by
Ulx; qe,7; - ;q, r; t) the pseudo-determinant

[ x,‘{k(l _ xk)retzl, dxy - f le(l — xk)retz,, dzs
0 0

(33)

z9 z2
t. t:
f 21 — z)e" dxy - - - f 23 (1 — z)"e"" day
0 0

More generally, if we replace r in the j-th column of (3.3) by
f—in(f = 1,2, -+, k),

the resulting pseudo-determinant will be denoted by

(3.4) U@; qe, T s Qe-1y Timr5 000 5@, 115 D),

or more explicitly by

Qe Tk *°° Q1,71
(3.5) Usx; it

Qs Tk = Q1,71
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Further, in the pseudo-determinant (3.3), if the indices of the i-th row alone
are different from those of the rest, we denote the resulting determinant by

(3.6) Uige, "5 501,307,
where gx , ", -++ ,q1 , r” denote the indices of the i-th row.
Since the integral of f(z1, 2, - - - , Zx) involves integrals of the type

3.7 I(x';q,r;F;t) = fo (1 — xz)"F(z)e* dx,

where F(z) is a function of z such that the integral in (3.7) exists, let us first
consider the integral (3.7). If F(z) is of the form

z z2
39 [ B0 = m) e dm e [ 2l — 206 da,
0 B
the integral (3.7) may be denoted by
(3.9) I@'5q, 151,75 5q,7;1).

Now consider I(z’; g, r; F'; t). Integrating (3.7) by parts we obtain the result
stated in the following lemma:

LemMA 1.
I@;q,rFit) = (@+r+ 1) =T q,r+ 1; F; 1)
(3.10) + I q,r+ 1 F8) + gl@';59— 1,7 F; t)
+ U@ 59,7+ 1, F; 0},
where
L qr+ 1;F;t) = 2°(1 — 2)™M'F(x)e” s, F = df;ix).

It may be noted that the right-hand side of (3.10) has been obtained by in-
tegrating (1 — 2)"*? and differentiating the product of 2%/(1 — z)% F(z) and
', treating this product as the » term in [ udv. Using Lemma, 1, let us consider
the integration of the function in (3.3) when k& = 2.

TuroreM 1. The pseudo-determinant

Usqe,riq, ) = (@+r+ 07 (=L@ g, r + 10, 750)
(3.11) 4+ 2I(z; o+ @, 2r + 1,2t) + @U(x; e — 1, r;qu, 75 )
+ U@ @, r+ Lig, ;0

Proor. First, note that U(z; g, r; ¢, r; ) = I(®; @2, 7; 1, r; ) —
I(z; q1, 7; q2, 7; t). Integrate the latter integrals by parts using l.emma 1 so
as to reduce the index ¢, in cach case by unity. The sum of all the terms thus
obtained after integration gives the right-hand side of (3.11). For a more detailed
proof of the theorem, the reader is referred to [3].
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In (3.11) the last pseudo-determinant can further be shown to be equal to the
difference of two others given by

(3.12) Ux;qe,r+1;q,7m50) =U@; ¢, 70,750 — Ul; e+ 1,501, 75 0).

For integration in the general case of the function contained in the pseudo-
determinant (3.3), some more results have to be used. These results are stated
as lemmas in the following section. For the detailed proofs of these lemmas the
reader is referred to [3].

4. Certain properties of I-functions. This section is devoted to the state-
ment of two lemmas which will be used in the next section.

Lemma 2. If (i, - - , q1) denotes any permutation of (qx , - - - , q1), then

k
(4.1) > I(@;qe,r; - 5 qh, T t) =Hll(x;qj,r,t),
=1

where the summation Y, extends over all posszble permutations.

Lemma 3. If Uz; qr , 1", t"; - 5 q1 , 1, ") denotes the pseudo-determinant
in (3.6) with t” for the index of the i-th row instead of t, which is the index every-
where else, then

Z ( 1)1 lU(xy qk7 P2 T q;’: T”, t”)(i)

1=l

4.2)

1
Z( D " I(; g7, ", ) U(@; @iy 75+ + 5 Qids T3 Q15 15+ 5.1, 75 0.

j=k

5. Pseudo determinant of order 3. In this section we shall prove the following
theorem:
THEOREM 2. The pseudo-determinant

Ul;gs,r5¢2, 7501, 75 0)
=(@+r+ DL a,r+ L0UE ¢, 50,750
+ 2I(z; s + @, 2r + 1;20I(x; 1, 1, £)
—2I(x; s+ qu, 2r + 1;20I(; q2, 7, 8)
+ @U@; ¢ — 1,75¢, 7501, 75 1)
+tU@; ¢, 7+ 150,750, 75 8)).
Proor. Expand the pseudo-determinant U(z; gz, 7; g2, 75 q1, 7; t) as follows:

(5.1)

s, 7 ' @ T QT
Ulx; g, 7 q,r|;tr+ U<z;| gsy 7 b
Q, T Q1,7 Q,T Q,T
(5.2) ’ ’ ’
Q, T Q1,7
+ UA{z; Q@,T Q1,7 ;t'.

qs, T
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It has to be understood that in each of the pseudo-determinants in (5.2), there
are no elements in the positions left blank. Each component in (5.2) stands for
the product of an element of the first column and its cofactor in the third-
order pseudo-determinant U(x; g3 ,7; 92, 7; q1, r; ). Since the order of integration
must not be changed, the product is not written explicitly. Now using Lemma 1,
integrate by parts the first pseudo-determinant in (5.2) with respect to x;, the
second with respect to z. , and the third with respect to z; . Add the expressions
obtained corresponding to each of the four terms on the right-hand side of
(3.10). This yields

(53) (@ + 7+ DA + BY + ¢ + DY),
where
(54.) A(s) = —-Io(x;q;«,7‘+ l;t)U(x;qz,r;ql,r; t);

2 .
(55) B® =23 (=1)7'U@; 45 + 2, 2r + 1, 26593 + 1, 2r + 1,20);
f=al

(5.6) C?® =Ul;q— 1, r50,7m5q1,730);
and
(5.7) D?® =U;q,r+ 1;¢,r5q,7;50).

Now apply Lemma 3 to the right-hand side of (5.5) with &k = 2; we at once get
the result (5.1).

6. Pseudo determinant of order k. We generalize the results of Theorem 2
in the following theorem:
TaEOREM 3. The pseudo-determinant

Uw; g, v qea, ;- 5q1, 75 8)

(6.1) = (g £ 7 + DA® + BP 4 q.0% + tD®),
where
(6.2) A® = Iz g, 7+ LOU@; qes s 1500 501, 75 0);
B® =2 i (=0 I(z; g + qi, 2r + 1,20
63) =
U@ qet, 75000 5 Q5415 T3 Qi1 15 070 5 Q1,75 8);
(6.4) CP =U@ige— Lrsgea, 50 5q,758);
and
(6.5) D® = U@;qu,r+ 1;qua, ;00 501,73 8).

The proof of this theorem follows step by step that of Theorem 2.
It may be noted that the pseudo-determinant in (6.5) can be expressed as a
difference of two others as given below:

65) U;qe,r+ L qea,r; - 5q,730) =U@;qe,75 0 541, 158)
' -~ U@+ L, r5qa,75 0 5q, ;).
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Further note that if ¢; = ¢;.1 + 1 in Theorem 3, the pseudo-determinant (6.4)
vanishes.
Now we state below another theorem which can be proved by employing

techniques similar to those used to prove Theorem 3.
Taeorem 4. If W(y; ar, b;ar_1,b; -+ ; a1, b; —t) denotes the pseudo-determi-
nant

v Y
[+ wan - [ e+ 00 du

.................................................

...................................................

vz v2 .
_/; y?k 8—‘”1/(1 + yl)" dyl .o ‘/; y‘;l e—tn/(l + yl)b dy1

wherea; > —1,b > a;+1,(¢=1,2,---,k) and-
O<py=yp=--=psy<»;

then
W(y;ar,b;a,1,b; -+ ;01,b; —1
(6‘8) ’ - 1 ) -1 k k (k) (k)
= (b—a—1"P% + Q¥ + aR® — t8¥),
where

69 P¥ = —Fyy;a,b— 1, =)W (y; @1, b; -+ ; a1, b; —1);

1
QP =2 > Fly;an + a;,2b — 1, — 2t)
(6.10) j=k—1

W; @1y b5 -+ 5 a1, b5 @51, b5 0 a1, b5 — ),
6.11) R® = W(y;ax — 1,b; a1, b; -+ ; a1, b; —10),
and
(6.12) 8® = W(y;ai,b—~ 1;a1,b; - ;01,05 —1).
The pseudo determinant (6.12) can be expressed as the sum of two others, as follows:
6.13) 8% = W(y;ar,b; - ;a1,b; —t) + W(y;ax + 1,b; -+, a1, b; —0).

7. Applications to multivariate analysis. The results given by Theorems 3
and 4 are useful for certain distribution problems in multivariate analysis.
Consider the well-known distribution of the non-zero roots (0 < 6, < 6, < - --
< 6, < 1; s < p, the number of variates) of a determinantal equation in multi-
variate analysis given by R. A. Fisher [1], P. L. Hsu [2] and S. N. Roy [5}. It
can be written in the form

p(6:, - -+ 8,) = C(s, m, n) IIl 071 — 6)" I;[ ©: — 0)
= D7

0<t=--=26<1,

(7.1)
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where

C(s, m, n)
(7.2) = p*/ 1_1l r{(2m + 2n + s+ 7 + 2)/2} Hl r{@2m + i 4+ 1)/2}
-T{(2n + 7 + 1)/2}T(/2).

For the interpretation of m and n, see [4].

Now let V¥ = > i1 6;. Consider the moment generating function of ye
given by E{ exp tV”}, where E denotes mathematical expectation. It is easy
to see that, in (3.1), if we put

(73) g¢q=m, r=mn, k=s, z; = 0;, and z =1,

multiply the resulting expression by C(s, m, n) given in (7.2), and integrate
with respect to the 6’s over thedomain0 < 6, £ --- £ 6, < 1, we at once obtain
E{ exp tV®}. In other words, E{ exp tV*} is obtained from the pseudo-determi-
nant (3.2) after substitutions (7.3) and multiplication by C(s, m, n). Now
apply Theorem 3 to E{ exp tV}. We obtain

8=1

(m + n + $)E('™") = 2C(s, m, n) 21 (=1~

(7.4) I 2m 4 s+ 5 — 2,20 + 1, 20)
XU;m+s—2,n; - ;m+gnm-+4j5—2,n; - ;mn;b)}
+tC(s,m,n)UL;m+s—1L,n+ 1;m-+s—2,n;-+;mmn;d.

The simplification here resulted from the fact that the A term (since z = 1)
and (since ¢ = gx—1 + 1) the C term of Theorem 3 both vanish. Now in view
of the result (6.6),

Ul;m+s—1,n+1;m~+s—2,n;--;mn;t)
(7.5) = (1/C(s, m, n))E{ exp tV®}
—Ul;m+s,n;m+s—2,n;: ;m,n;t).
Further, using property 1 given in (2.3) "
U;m+s—2,n - sm+jnm+j—2,n; - ;mmn;i)
(76) tv(a—2)
= (1/C(s — 2, m, n)E{(22 61 -+ 6,_;1)e b

where Y 6, - - 6,_;; denotes the (s — j — 1)-th elementary symmetric func-
tion in (s — 2) variables 6, - - - 8,_» . Again using the same property in (7.5),

77 UQ;m+s,n;m+s—2,n; - ;mn;t) = (1/C(s, m,n))E(V©e!"™),
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Now make use of (7.5) to (7.7) in (7.4) and we get

(m +n+ s — DEE"”) + tB(V?e™) = (2C(s, m,n)/C(s — 2,m, )]
(78) =t . -
2 (=D 2m+ s+ - 2,20+ 1L,20B{(6: - - uya)e” )

j=1

To illustrate the use of (7.8), let us put s = 2. This yields
(m+n—t+ 2EE"?) + E(VPe" )
= 2C(2, m, n)[(1; 2m + 1, 2n + 1, 20).

Noting that I(1; 2m + 1, 2n + 1, 2t) is a confluent hypergeometric function
which can be expanded as a power series in 2¢, and that exp tV® also can be
expanded as a power series in £, equating the coefficients of like powers of ¢
on both sides of (7.9) yields )

(m+n+i+2u® — B =2"Cm+2)---@m +i+1)
m+n+2)/Cm+2n4+4)---Cm+2n+i+3) (=12 ---),

where u;® denotes the i-th raw moment for 2 roots. After successive substitutions
of lower order moments given by the respective recurrence relations (7.10), we
get

(7.9)

(7.10)

L@ = (mAn+ 206+ DTE@m + 20 + 4) i gi-st1

T I'2m + 2)T(m +n + 3 +7) =1
rem+i—j+3)m+n+7—35+3)
r@m+2n+4+¢—3+5IC —j5+2) °
Computations of a similar nature with s = 3 and 4 in (7.9) and further evaluation
of the central moments have yielded the following results [3]:

(7.11)

(7.12) p? =s@m+s+1)/2m+n+s+1) (s=1,2 3, 4),
u’ = s@m + s+ 1)2n + s+ 1)
(7.13) @2m + 2n + s+ 2)/4(m +n +s+ 1)
m+n+s+2)2m+2n+ 25+ 1) r=1,234),
and

(7.14) u$ =s(n — m)@m + s+ 1)2n + s + 1)
(m+n+1)2m+ 2n+ s+ 2)/d,

where
d=@m+n+s+1P’m+n+s+2)(m+n+s+3)

2m + 2n + 28)(2m + 2n + 28 + 1), z=1,2,3,4).

For the corresponding us”, the reader is referred to [3).
In addition to the usefulness of Theorem 3 in studying the moments of the



1114 K. C. 8. PILLAI

sum of the roots as outlined above, this theorem is also useful for evaluating the
cumulative distribution function of the largest root, 6, , of the determinantal
equation. For the latter purpose, in Theorem 3, multiply

U@; g, 75 @1, 7500+ 5q1,758)
by C(s, m, n) given in (7.2), after making the following substitutions:

(7.15) gi=m+j—1, r=mn, k=s, z; = 0;, and t=0.

In this case, the C term of Theorem 3 alone vanishes. By means of Theorem 3,

we reduce the cumulative distribution function involving a pseudo-determinant

of order s in terms of these of orders (s — 1) and (s — 2). Since it has been

shown [3] that the cdf of the smallest root can be obtained from that of the

largest, Theorem 3 is thus useful in obtaining the cdf of either of these roots.
Again if we wish to study the moments of the criterion

U = Y16/ — 6),
by using Theorem 4, we will arrive at the following result:

' —m — s+ OEE'") + tE[U®e"")
8—1

(7.16) = (2K, m, w)/K(s — 2,m, w)} T (—1)~*

F(o;2m +s+j—2,2n — 1, — 20)
E(CC M -+ hgon)e™ 0},

where \; = 6./(1 — 6;), which transformation in (7.1) gives K(s, m, n’) from
C(s,m,n)andn’ = m+n + s + 1.

For a detailed study of these applications in multivariate analysis, the reader
is referred to [3].

8. Acknowledgments. I wish to acknowledge my indebtedness to Professor
8. N. Roy for his kind advice and criticism in the course of my investigations.
I am also indebted to Professor H. Hotelling for his active interest and valuable
suggestions in the preparation of this paper.

REFERENCES

[1] R. A. FisuER, “The sampling distribution of some statistics obtained from non-linear
equations,” Ann. Eug., Vol. 9 (1939), pp. 238-249.

(2] P. L. Hsu, “On the distribution of the ‘roots of certain determinantal equations,’’
Ann. Eug., Vol, 9 (1939), pp. 250-258.

[3] K. C. 8. PiLva1, “On some distribution problems in multivariate analysis,” Mimeo-
graph Series No. 88, Institute of Statistics, University of North Carolina, 1954.

[4] K. C. 8. PiLra1, “Some new test criteria in multivariate analysis,”” Ann. Math. Stat.,
Vol. 26 (1955), pp. 117-121.

[5}' S. N. Roy, ‘“‘p-statistics or some generalizations in analysis of variance appropriate
to multivariate problems,” Sankhya, Vol. 4 (1939), pp. 381-396.

[6] S. N. Roy, “The individual sampling distributions of the maximum, minimum and
any intermediiate of p-statistics on the null hypothesis,” Sankhya, Vol. 7- (1945),
pp. 133-158.



