SOME ASPECTS OF THE ANALYSIS OF FACTORIAL EXPERIMENTS
IN A COMPLETELY RANDOMIZED DESIGN!

By M. B. WiLk? aNp O. KEMPTHORNE?

Towa State College and Princeton University; ITowa State College

1. Introduction. This paper is concerned with some aspects of the statistical
analysis of factorial experiments carried out according to a completely ran-
domized design, and is one of the joint portions of an investigation into the role
and meaning of linear statistical models in the analysis of randomized experi-
ments.

There are essentially two ways of obtaining the analysis of data obtained in a
comparative experiment. One way, which is given in standard texts, is to write
down a model of the type

Yijk-.o = 4+ a; + bj 4 -+ ete,,

where ¥;x... is the observation and the terms on the right-hand side are fixed
unknown constants or random variables with specified properties. The above
equation with a complete statement of all the properties of the quantities con-
tained in it is usually called the model for the experiment. The texts and the
literature are to the best of our knowledge, with a few exceptions to be mentioned
later, bare with regard to how one determines the model, how one answers a
question such as “Why not a multiplicative model?”’ or “Why are the a’s fixed
and the b’s random?”’ The other way is that practiced intuitively by many ex-
perimental statisticians and described most aptly by Fisher (3], [4], [5], [6]) in
which (a) one envisages an analysis of variance of the observations from the
point of view of topography, apart from treatment, such as for instance in a field
experiment by rows, columns, plots within row-column cells, etc.; (b) one en-
visages an analysis of variance by treatments; (¢) one notes how the treatments
have been assigned to the experimental material, such as, for instance, factor @
to rows; and (d) one therefore sees with which part of the topographical analysis
any particular component of the treatment breakdown should be associated.

The second procedure cannot be regarded as fully specified by what is said
above. The first procedure can only be regarded as arbitrary unless some logical
basis can be given for it. It is to the problem implied in the last sentence which
we have addressed our work.

In preparing this paper for publication we have had the benefit of specific
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and general criticism and suggestions from Professor John Tukey, whose assist-
ance and advice it is a pleasure to acknowledge.

2. Relation to other work. The general history of the line of attack is given
by Wilk and Kempthorne [15]. Since that time Smith [10], Scheffe [8], and Corn-
field and Tukey [1] have worked on the general problems indicated above. Corn-
field and Tukey [1] also discuss relations between approaches to the problem.

3. Some fundamental concepts. The concepts implied in the words “treat-
ment” (or “factor level”),* “experimental unit” and ‘“true response” enter
importantly into the developments in the sequel. We shall attempt to convey the
general meaning which these terms have for us.

While recognizing that the term treatment generally (operationally) designates
a category of entities or operations, we shall use it as synonymous with “ideal
treatment” or “typical treatment.” An example of treatment as a category is a
variety of, say, corn with operational representations as individual seeds, so that
the treatment may be thought of as having a nested structure. The conception of
a treatment such as “‘a temperature of 45°C” is often different. Even if tempera-
ture control is difficult, so that in an actual trial one uses (45° 4 €)C with
unknown, one usually feels that it is reasonable to conceive, at least on a macro-
scopic scale, of a “true or ideal treatment” of 45°C, in the attainment of which
we are frustrated by physical difficulties.

In most cases it is useful to introduce explicitly the netion of a “treatment
error” which will reflect the difficulty in attaining or reproducing a conceptually
meaningful ideal. In this paper we shall take such a view. The case when the
treatment should properly be regarded as a member of a well-defined population
will be given in a later paper.

A reasonable operational definition of experimental units, though circular to
some extent, is “those entities in an experiment to which treatments are assigned
at random.” It is often possible and useful to think of experimental units as
physical entities such as plots of land or individual animals, but in many cases
such a view is misleadingly naive. Extensions of the term to include periods of
time, states of mind, and other ill-defined complexes of conditions are needed.
In an agronomic experiment we would regard the unit not simply as a plot of
ground, but rather as the plot plus weather and other conditions not subject to
test. In specific instances such a view involving “ultimate identification” of
experimental units may be too restrictive and could be meaningfully and usefully
relaxed. In the formal developments in'the sequel, we shall be operationally
deterministic in that we shall regard an experimental unit to be conceptually
entirely identified so that a given stimulus would produce a definite response.
This should not be construed to mean that every situation must be fitted exactly
into such a context for the analysis to be useful.

4 In general a ‘“‘treatment” is partially specified by a “factor level.”” However, most of
our remarks can be read substituting ‘factor level’”’ for ‘‘treatment.’”’
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The notion of “true’” or “typical” response seems readily meaningful at least
superficially, and deeper analysis immediately involves one in philosophical
discussion which is unnecessary in most experimental contexts.

As regards ‘“experimental error’” it may be useful to distinguish between
“physical errors” and “sampling errors”; and in the first category to distinguish
the experimenter’s concern with “systematic errors” from the statistician’s
treatment which usually revolves around an assumption of “random errors.”
Some obvious categories of physical errors, with respect to subjecting a given
experimental unit to a given treatment and observing the response, are errors
of measurement of the response, errors of treatment application, and, from some
points of view, errors dependent on the ‘‘physical state” of the experimental
unit. As we shall see, certain sampling errors can be controlled, in a statistical
sense, by the device of randomization. In the analysis of other errors the statis-
tician and experimenter must rely on judicious assumption based on insight and
experience.

4. The experimental situation and design; basic notation. The essence of the
completely randomized design is that no attempt is made to structure the ex-
perimental units; or from another, more accurate viewpoint, no restrictions are
imposed in the random assignment of treatments to available experimental
units.

‘We shall describe in detail a situation in which treatment combinations of
interest may be classified according to the “levels” of three “factors,” This will
provide enough generality to indicate extension of the methods and results.
The case of two factors can be obtained formally by considering one factor to
have only one level.

The factors (e.g., temperature, varieties, types of acid, ete.) will be denoted
by script letters @, ®, @. The number of levels of each factor, in the experimental
population, will be denoted by the corresponding capital letters A, B, C. We
suppose, for purpose of reference only, that the levels of each factor are ordered
(arbitrarily) and let ¢ = 1,2, --- ,4;7=1,2,--- ,B;k = 1,2, --- , C, denote
the various levels in the populations of levels of factors @, @ and €, respectively.

Suppose there are P experimental units with respect to which we wish to
study comparatively the various treatment combinations. (The details of what
we may be interested in doing will vary with the specific physical situation, but
some general statistical aspects of what the bare situation and design enable us
to do remain the same.) Again we suppose, for formal reference, that the units are
ordered, and let m = 1, 2, ---, P denote the unit in the population of units.

The experimental design is now defined as follows:

(1) Select a levels from A4 of factor @ at random.
(ii) Select b levels from B of factor ® at random.

(iii) Select ¢ levels from C of factor € at random.

(We will use the notation ¢* = 1,2, --- ,a;5* = 1,2, --- ,0;k*=1,2, -, ¢
to denote the randomly selected levels of @, ®, and @ respectively in order of
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their selection. Thus, for example, ¥ = 1 corresponds with probability 1/4
to any designated value of 7.)
(iv) Select p experimental units at random from P, where

a b c
p= Z Z Z Ngejske o and all Nisjes = 1.
%=l =] k%=l
The values of the 7«4+ are treated as known prechosen fixed numbers. (Further
explanation of this is given at the end of this section.)

(v) Apply selected factor levels to selected experimental units at random but
so that selected treatment combination (¢*/*k*) appears on 7+ of the selected
experimental units.

Some purely formal difficulties can arise in this general exposition for the case
of, say, a = A. According to our description above, the identification of levels of
@ by 7* would be a random arrangement of that effected by 7. In dealing with
symmetric functions, clearly no difficulties arise. The whole matter can be
handled simply by a convention that, for example, when 4 = a we take ¢ and ¢*
to be identical indices; or, where non-symmetric functions arise, it can be handled
by an extended notation, as will be seen in the sequel.

It is most natural to think of the design as being imposed upon given back-
ground populations of levels of factors and of experimental units, but it should
be pointed out that it is in fact our procedure in the design which determines the
relevant (statistically) population of treatments and units to which our experi-
ment applies. Some further discussion of consequences of this point is given below.

The description above is intended to be general. Cases of fixed, mixed, and
random model situations are included as special cases. The possibility of equal,
proportional, or unequal numbers in the “subclasses” of the observations is
allowed for. In the described set-up the number of observations associated with a
treatment combination depends on the actual realization of the experiment,
that is, on the outcome of the random selections, and not, in general, on the
population of treatments. An important exception to this is the case of fixed
factors. Thus, we specify that the selected treatment combination (:*j*k*) appear
n 5 times; but, in general, the association of (¢*/*k*) with values of (¢jk) will
depend on the random selection process.

b. Some discussion. In the formal description of the experimental situation
and design in the preceding section, the role of experimental units in the experi-
mental situation and the relation of the sample of units to the population are
specified explicitly. ‘

The population of units defines, in a sense, our experimental milieu or back-
ground. Even if all units can be thought of as identical (a rare event) many back-
ground influences (not under direct study) are being “held constant.” For ex-
ample, 10 cc samples from a well-mixed, non-volatile solution may well be con-
sidered (aside from pipetting errors) essentially identical. But if, in a two-factor
experiment, one factor consists of levels of concentration of a reagent and another
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is time allowed for reaction, then it is part of the relevant background for in-
ference, tied up with the conception of experimental unit, to describe (or at least
keep in mind the existence of) such influences as ambient temperature, baro-
metric pressure, type and shape of container, etc. Thus our inferences must
always be interpreted with respect to some population of experimental units,
even though in specific instances we may be quite certain of the absence of in-
fluence of certain aspects of the experimental milieu.

The emphasis on the relation of sample to population is a fundamental con-
tribution of procedures of modern statistical inference toward scientific objec-
tivity. In spite of the wide acceptance which, we believe, the preceding sentence
would find there appears to be some tendency among statisticians to think of
the population to which statistical inferences are to be made to be not that from
which the random sample is obtained but rather one which is indicated by their
“interest.” The key to this difficulty msy lie in the failure to recognize any
distinctions between “empirical inferences’” based on statistical techniques and
“secientific inferences” based on theories of mechanism, mechanical analogies,
intuition, etc., in addition to statistical inferences.

For example, in a two-factor experiment involving specific insecticides tested
with respect to a random selection of 15 types of insects from a population of 200
types of insects we would recognize the statistical validity of two viewpoints in
evaluating the comparative utility of the insecticides: (i) relative to the entire
population of 200 types of insects from which we have a random sample; (ii)
relative to the 15 types of insects actually tested (i.e., the ones which appeared in
our random selection). There does not appear to be any general justification in
attempting, on the basis of data relating to 15 non-randomly selected types of
insects (as, for example, those prominent in a certain region), to extend the
statistical (empirical) inference to some broader, undefined, population of insect
types. There can be no question as to the need or importance of making such an
extension, but such extension is essentially non-statistical and must be based on
subject matter knowledge and intuition.

6. A conceptual framework for analyses; the population model. In the pre-
vious sections we have described an experimental situation and procedure which,
at least formally (and granted agreement on the meaning and necessary proced-
ure implied by “random’’), is non-controversial. We propose now to provide a
conceptual framework for the statistical analysis. This will naturally require
some assumptions, all of which we will attempt to make elementary, in the sense
that their implications are easily appreciated, and explicit.

We postulate the existence of a real (unknown number Y. which represents
the “true” (or “typical”’) response if unit m is subjected to the treatment com-
bination consisting of the sth level of @, jth level of ®, and kth level of €; and we
take as our immediate framework of statistical concern the conceptual set {Y.jkm},
and more particularly certain functions defined on the elements of this set.
Several presumptions are implicit in the preceding sentences. First, the scale
of observation is considered as “given,” though our succeeding discussion could
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proceed equally well in terms of any function of Y. This is not to imply that any
scale for analysis is as informative as any other. Second, for the quantity ¥;jim
to have meaning by itself it is a necessary assumption that the response from
given treatment on given unit be dependent only on that treatment and unit
alone, and not on the over-all configuration of other treatments and other units;
this excludes certain experiments such as those involving competition in animal-
feeding trails. Third, we assume that the notion of “true” or “typical” response
can be given an objective meaning in the given situation.

Proceeding now on the basis of the previous paragraph, we know that if we
actually subjected unit m to factor combination (¢jk), we would not in general
observe the true response, Ym , owing to inevitable errors in treatment appli-
cation, in response measurement, and variations for a given unit owing to its
“physical state”. These types of errors we refer to as technical errors. These
technical errors have no relation to the formal randomization procedure but
belong to the conceptual framework. Consequently, in a general study of this
sort we have three alternatives with respect to technical errors: (i) To deal with
the “ideal” case where such errors are not considered, with the understanding
that the application of the method and results in specific situations would require
some extensions, depending on “reasonable” assumptions in the specific case.
(ii) To employ simple assumptions, which are popular, easily understood, and
often reasonable, again with the understanding that adjustment may be neces-
sary to meet specific situations. (iii) To attempt to carry technical errors with
some sort of “maximum generality.” Procedure (ii) appeared to us to be the most
useful.

Accordingly, we will assume that if combination (3jk) were applied to unit m,
then we would observe

Yijkm = Yijkm + €ijkm 5
where the €;xn , representative of combined technical errors, can be treated as
random variables which are mutually uncorrelated with mean 0 and common
variance ¢’

Some directions of increasing generality of assumptions would be (i) relaxing
the homogeneity assumptions to, say, variance (e;jim) = 0w ; (ii) relaxing the
homogeneity assumptions to, say, variance (e;jim) = o7 ; (iii) ¥ixm follows some
distribution F;jem(y) of which Yijem is some parameter. It is easy to see that the
results we shall give are in fact essentially valid if generalization (i) above is
permitted; we have not built it in explicitly to simplify the presentation and
lay clear some aspects of the results. Furthermore, the results on ems (expecta-
tion of mean squares) are essentially valid if generalization (ii) is allowed.

Anticipating its utility in the succeeding section we can now write down the
population model as

Yijem = p + @i + b; + c + (ab)s; + (ac)ik + (be) jx
+ (abe)ijk + Pm + Qijkm + €ijim .

No further assumptions are involved in this decomposition, which is based on
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an algebraic identity involving means and deviations over the array {Yjim}.
The explicit definitions and physical interpretations of the components of popu-
lation model are delayed to Section 12 below. We note here that while the detail
of the population model depends only on the experimental situation, the specific
breakdown which we employ is determined by the design, since it will turn out
that certain of the components of the model are estimable.

7. The statistical model; the function of randomization. We turn now to a
consideration of the actual experimental observables. Let zxju+s denote the
fth replicate observation obtained from selected factor combination (2*/*k*),
where f = 1,2, -+, najus . Since Zjues is obtained from some one experi-
mental unit, each (7**k*f) corresponds to some value of m, the experimental
unit index. Against the background of the previous section we may regard the
statistical effect of our experiment as giving a random (within the well-defined
restrictions of the experimental design) sample, the {zuxju+s}, from the set of
random variables {¥:jm]}; i.€., & restricted random sample of size D ik ek Mgn jon
from the ABCP populations specified by the random variables {y:jim}.

It is appropriate to discuss here the function of randomization in this experi-
mental design. Clearly, if we could observe the entire set {Y:im}, we would
know everything (empirically) possible about the experimental situation under
consideration. Alternatively, if we could obtain observations on each member
of the set {y:jim}, then only the technical errors {e:jxm} would be involved in our
inferences about functions defined on elements of the set {Y;xm}. However, we
are in general able to observe only a subset of the {yum}, and hence our infer-
ences will be influenced by additional variabilities. The function of randomiza-
tion is to attempt to control, in a statistical sense, these additional variabilities,
and to enable us, perhaps, to obtain valid estimates of the uncertainties of in-
ferences.

We incorporate the restrictions of the experimental design with the popula-
tion model to obtain a statistical model for the observations, {Z: e}, in terms
of parameters defined on elements of the set {¥:um} and of random variables
which reflect (and define) the restrictions of the design. This statistical model
has the advantage that it, together with the properties of its components, sum-
marizes sufficiently all the relevant statistical knowledge and assumptions for
the experiment. In addition certain results on linear estimation, variances of
estimates, and expectations of analysis of variance mean squares may be de-
rived by elementary algebraic operations using the statistical models. Further-
more there would be nothing more difficult than heavy algebra involved in
obtaining more complex results, such as variances of mean squares, using the
statistical model. It is to be expected, however, that more purely combinatorial
arguments will shorten the process with regard to particular attributes (cf.
Tukey [11] and Hooke [7]).

Full detail on the necessary additional notation and definitions needed to
write down the statistical model is delayed till Section 12. At this point we note
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that the statistical model takes the form
Tixjrpxf = M + af. + b:‘t + C]tt + (ab)f.,w + (0,0)::]‘*
+ (be)forr + (abC)ijuin + Dlejmrsy + Ghojmins + €l mrsy

where, for example, als = Y i ai a;, the a; being parameters from the popu-

lation model, the " being random variables which take on values zero or one
with joint probability distribution specified by the experimental design. (In
particular, for aj the relevant item in the design is the random selection of a
levels of factor @ from the population of 4 levels.)

It is apparent from the subscripts in the above model that the last three com-
ponents are mutually confounded, but their separation in the model is of im-
portance because their statistical properties and experimental content are not
alike.

The formal resemblance of the above statistical model (which may be appro-
priately called a definitional type model) to the usual ‘“‘assumed linear models
said to underly the analysis of variance” will be apparent and is not fortuitous.
We note for emphasis that the model above depends only on the assumptions
given in Section 6 above and not on any detailed knowledge or assumption con-
cerning the mechanism (behaviour) of the experimental factors or units.

An extension of the application of the statistical model which we shall con-
sider in this paper only very superficially would be to deduce certain elementary
properties of the terms on the right-hand side (e.g., means and variances) and
employ these with sufficient homogeneity and distributional assumptions to
suggest a modified mathematical model which is more tractable from the point
of view of “exact’” distribution theory (cf. Scheffé [8]).

8. Succeeding sections. We invert the logical order of development by giving,
in succeeding sections, results on expectations of analysis of variance mean
squares (ems) in advance of definitions, notation, and derivations underlying:
these results. This is done because many who may be interested in the structure
of these results will have much less concern with the detail of their derivation.

In Section 9 we deal with the case of proportional numbers (defined below)
and on orthogonal® analysis of variance based on weighted cell means; in Section
10 we consider the case of general numbers and a nonorthogonal analysis based
on unweighted cell means; Section 11 deals with the special case of one factor.
In addition to general formulae for expectations of mean squares, some questions
of estimability of components of variation and of ‘“proper error terms’’ are taken
up.

In Section 12 we give details concerning the population and statistical models,
explicit definitions of the components of variation, an example of the use of the
statistical model in deriving ems,’ and discussion of various complements such

& We use this term to refer to a decomposition in which the individual sums of squares
sum to the so-called total sum of squares.
¢ Expectations of mean squares.
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as the physical interpretation of the parameters of the population model, rela-
tion of non-additivity to scale of observation, ete.

In Section 13 we describe briefly a more symmetric form for the results on
ems which makes the extension to four or more factors very simple indeed. (This
general pattern has been extended to include other experimental designs and its
over-all structure will be described in later communications.)

Section 14 deals illustratively with problems of linear estimations, errors of
estimates, and estimation of these errors, using the statistical model for these
considerations.

Certain problems connected with the different roles of fixed and random factors
and. the need for functional structure analysis in the former are discussed by
Wilk and Kempthorne [15] and will not be treated here.

9. The case of three factors, proportional numbers, no additivity assumptions.
We present in this section results on expectations of analysis of variance mean
squares (henceforth referred to as ems) for the experimental situation and design
given in Section 4, employing the conceptional framework described in Section
6, under the restriction that the number of observations in the subclasses fulfill
the condition that

Nixjrpx = TUD jxWix

where 7 is the highest common factor of the {n;+}. Such a condition is often
known as that of “proportional numbers.”

Under these conditions an orthogonal analysis of variance, based on weighted
means, exists. A case of ‘“proportional numbers” can arise quite naturally when
there are unequal numbers of observations corresponding to only one factor of
classification.

The algebraic structure of the mean squares for such an analysis is well known;
for example,

1

A¥ = 1
(@ — 1) ss5oees

(xiv... _ x....)2
1
=Ry

where the usual dot convention is used to denote means.
We shall have use for the following notation:

U= un; V=22 W =2 we;
Ll jo k*

2
IjB = (:l)i:j:.. — Zge.e. = L.js.. + :1)) y

U* = > ub/U%, V* = 2> ok V W* = D wie/ W
FT) 0 k*

(Note that for the case of equal numbers U = a,V = b, W = ¢, U* = 1/a,
V* = 1/b, W* = 1/c. Of course, in general, U* < 1, U* = 1/a.) Employing
this notation, and recalling that f has range 1, 2, - - -, rusvswe , We obtain
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A% = a .}. 1 rVW Z‘: Uie(@ive. — T....)%

ij = m TW i;‘ui. v,-.(x,-.j... = Lisreeo — T je.. + x)2

General results on ems for this analysis are given in Table 1. The definitions
of the components of variation” which appear in the table are given in Section 12.
For all the ¢”s and @”s with the exception of ¢ the definition is such that they
are a sum of squares of quantities divided by the number of linearly independent
relations among these quantities. The subscript notation is intended to be sug-
gestive; for example, o2 is a measure of dispersion of the population parameters
{a;} which are the “main effects” of the levels of @; o0& reflects the dispersion
of the population of interactions of levels of @ with levels of ®; @2, reflects the
dispersion of the interactions of levels of A with experimental units; etc. (See
Section 12 for further detail.) The definition of o2 requires a little comment.
It is defined as

2
O = A“_—“"——BC(P —1D 4 Z Qukm,

while the number of linearly independent relations among the set {gijkm} is
(ABC — 1) (P — 1). The reason for this definition is partly because o> appears
in the ems for the residual and partly to simplify the formulae in Table 1. (Later,
when we put Table 1 in a more symmetric form in Section 13, this disturbance
will be eliminated.) The only distinction between the @”s and the ¢*’s is that
the former all reflect interaction$ of treatments with experimental units. The
distinctive notation was employed to make this readily apparent in the table.

The results of Table 1 indicate that, in general, unbiased estimates of o2, o3,
ot, oat , etc., cannot be obtained from the analysis of variance mean squares if
unit-treatment interactions are not negligible.? The corresponding statement for
the appropriate denominator in a test of significance criterion is complicated by
possible ambiguity with respect to the null hypothesis of concern. But it is appar-
ent that in a test of significance concerning, for example, the main effects of
levels of @ (see definitions of Section 12), we cannot in general find a “denomi-
nator” whose expectation is

E(A* rUVW(z—:I%z >

The question may arise as to whether it is in fact components such as o3
PRSI S ——

7" We refer to these quantities as ‘““components of variation’’ rather than as ‘‘components
of variance’’ to avoid possible ambiguity, since they are in fact measures of dispersion for
the population of quantities on which they are defined, and are not, in the usual meaning of
the word, variances of random variables.

8 This “‘bias’’ in the analysis of variance is the generalization of a similar result for a
simpler situation, given by Wilk [12], [13].
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TABLE 1
Expectations of mean squares for orthogonal analysis of variance
sﬁi’; . Expectation
A* | P4 o+ o 4 rUVW (}—T%—){(V _ E})(W* - %,)[oib .,bc,,]
+ <W* - é)[a - Qm] <V* - %)[oib 1 Qib,] +[ Q,.p]}
B* |+ o4 o+ UVW (ib V)) {(U* - )( é)[am . Qmp]
() E 3|+ (07 - —)[a,,, B0 |+ -2 pr]
C* | Pttt UVW (t _“1’)) {(U* - -)( 1>[a,.bc -1 Qibcp]
+ (V* - ]é)[azc - Q?:c,,] + (U* - —>[ Qm] + [ Qc,, }
55 |ttt ot 4 rUVW (1( _Ugg — K*)
. {(W* - g,)[aibc - -IPQZM,,] + [aib - ;,Q?.bp]}
Lo | & +a+d+ruvw s o _U?)((lc — I14)7*)
{( - l\[aa,,c - %Qim] + [am Qm]}
Lo | &+t +ruvar (;_f’?)(é - ?)'*)
. {(v - Yot 3 Gy |+ [ ok - ,—}-sz]}
Disc | &+ ot + ob +rUVW a @ (f_*)l()l(b__‘:;)((cl__l?*) [ Gabe — Qm]
B* | 4ol4a

which are of interest rather than the linear combination [o3 — (1/P)Q5,).
The answer to this lies in an examination of the quantities {a;} whose dispersion

make up ol. By definition a; = Y;... —

Y.... and is thus the deviation of the

average ‘‘true’” response from level 7 of @, in combination with all levels of all
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other factors and all experimental units, from the over-all average from all
levels of all factors on all units. We refer to a; as the main effect of the sth level
of @. The difference between two such main effects a; — a; measures the dif-
ference (averaged over all levels of all other factors and all units) between operat-
ing at level ¢ of @ and level 7’ of @. On the other hand the combination

[O'a - (I/P)Qap]

is not always necessarily positive (though it will be in most cases of practical

TABLE 2
E'rror terms
Classification Error terms
®-1) 1 -
Q 4 =R¥+ — L (1 V*) V* — B (I:B — R¥)

+ s (7 - bl‘> (e = &9

- (1(1)—_1/3))((16 = ;,),* vE= )( é) (Isc — R¥)

® V,,=R*+(§“ U*)( —i)(AB—R*‘)
+ (1(“ 75 < é) (Itc — R¥)
o 1(‘_’_ _U,}))((lc = ;),*) (U* XW* ——) (I%sc — R¥)
e Vo= R* + (i“ s ( i) (I*c — R¥
+(—(1b—__—Vl—l—)( —é)(I:C—R*)
-asmas (- A}> (v = 5) e = &
AX® | Vin=R*+ (fc v;l) (W* 61,) (%o — R¥)
a@xe VAC=R*+((Tb§%<V*—l—§)(I:Bc—R*)
X € | Vs =R*+ (—i—“_—"UIZ) (U Zl> (I%sc — R¥)

A X ®XEC| Vipe =R*
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interest) and hence is not a measure of dispersion of any quantities defined on
the basic population of true responses {Yjim}.

Two factors tend to decrease the importance of this “bias” in the analysis of
variance due to interactions of treatments with experimental units. First, the
quantity confounded with the component of variation of interest enters in the
ems with coefficient 1/P. Thus if P, the number of experimental units is large,
then the effect of the confounded term will usually be small. The origin of the
confounded term is the negative correlation induced on observed responses
for a given treatment combination owing to the random assignment of units
from a finite population. As the size of the population of units increases, this
correlation goes to zero. Secondly, each Q* quantity represents a higher order
interaction term than the component with which it is associated, and it is often
true that the higher the order of the interaction the smaller it will be. The size
of unit treatment interactions depends somewhat independently on two con-
siderations, namely, the scale of measurement of the responses and the hetero-
geneity of the experimental units. Of course, homogeneous experimental units
will mean additivity of units and treatments on any scale.

Under the assumption that all unit-treatment interactions are zero (i.e., that
gijtm = 0) so-called proper error terms would exist. Table 2 lists error terms for
each classification of the design. The bias in using these error terms when unit-
treatment interactions are not negligible is exemplified by

[—rUVW( — U / (a = 1)(1/P)Qasl,

which is the bias in using V4 as an error term for @ main effects.

As we shall see in a later section, the device of randomization is fully effective
in allowing unbiased linear estimation of treatment effects. But essentially un-
biased error terms will be obtainable from the analysis of variance, in general,
only when the experimental units are not too heterogeneous or the size, P, of
the population of units is large, or the scale is such that units and treatment
combinations are additive (in the sense that their interactions on that scale are
zero.) There does not appear to be any simple statistical method to overcome
this confounding which is due to the ‘“fractional replication” which is imposed
by the restriction that each unit can be ‘“used only once.”

We close this section with a discussion of three special cases which have been
given much attention in the past. For simplicity we reduce our consideration
to those involving two factors, @ and ®, putting C = ¢ = 1, and shall take P
as “very large.” The cases we detail are the so-called “fixed,” “mixed,” and
“random” model situations. The results on ems are then those of Table 3:
oy = a"';, + a:.

The following points from Table 3 are worthy of note: If the numbers of ob-
servations in each “cell’” are equal, then U* = 1/a and V* = 1/b and then the
component o2 vanishes from E(4*) and from E(B*) for the fixed case; and
from E(B*) in the mixed case, where @ is the “fixed" factor, but not from E(A4*),
where ® is the random factor. If the numbers are proportional and not equal
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TABLE 3
Ems for special cases of a two-factor experiment

31:;[::; 1. Fixed: 4 = a,B=0b | 2. Mixed: A =a,B>b | 3. Random: A>>q,B>b
* 2 1-0U% 2 (1-U%
A a0 + rUV -——————(a =" a0 + rUV ——-——(a ) Same as 2.
( [(V* - %) o + aﬁ] (V*e2 + ol
* 2 1-v* 2 (1-v%
B oo + rUV ) Same as 1. a + rUV —————(b =)
[( U* — %) om + ai] U + ail
— %*
*s | oo+ rUV a-u" Same as 1. Same as 1.
(@ —1)
(1 =7% 52
(b — 1) ab
R* | o}

then, even for these special cases, we do not have simple comparability of the
orthogonal analysis of variance mean squares, as has been pointed out by Smith
[9]. The fact that, for the case of equal numbers in the mixed case, the compo-
nent due to interaction remains associated with the fixed factor but not with
the random factor is due, loosely speaking, to our having information on each
observed “random” factor level in combination with every fixed factor level in
our population; but for each fixed factor level we have only a random selection
from the possible random factor levels. The crucial point is that for the case
@ fixed, ® random, o, reflects the dispersion of effects of levels of @ averaged
over all levels of @ and similarily for o3; and while every level of @ is used in the
experiment, only a sample of levels of ® are studied.

10. The case of three factors, general numbers, no additivity assumptions.
In the event that no restrictions are placed on the numbers 7:+;x.+ , except that
they be non-zero, an orthogonal analysis of variance, in which the various sums
of squares all have a meaningful relationship to the experimental situation, for a
multiple factor experiment will not, in general, exist. One can, however, make an
analysis of variance based on cell means. The algebraic structure of such an
analysis is exemplified as follows: Let A** be the mean square associated with @
main effects in this analysis, and let

g~

Tis... =

Z Tirjore
C j*k*



964 M. B. WILK AND O. KEMPTHORNE

and

1
— Z Tivjeks ;
be isjoke

then,
A** = be Z (fp... - j....)z/(a - 1).

The table is completed by a line for residual mean square, R**, which reflects
“within cell” deviations and is in fact identical with R* of Section 9. This analy-
sis is not orthogonal in the sense that the individual sums of squares will not.
in general, sum to the so-called total sum of squares,

TABLE 4
Ezxpected mean squares for non-orthogonal analysis of variance
Mean .
square Expectation of mean square

Ax* % (‘72 + 0'3 + p) + (B b) (C _ C) I: Oabe — Qabcp]

+€-9, [ Qm] (B —b [a.,c ——Q.,b,,] [ ot — I%sz]

2% | (A a) (C )
B ;; (0’ q p) + C [ Oabe — Qubcp

40 [ - I_l,azc,,] + A0 - Lo, |+ et - Lai,]

B R R e e )[ Qmp

n

+ (B B b)a[ QbCp] (AA a)b[ Qacp +ab [0'3 - I_];Qgp]
Iis (a + o3 + o3) + (C 2 Tabe — ?}Q:bcp +c|om— l—i Qosp
I:: "‘1; (0'2 + 0!1 p) + (B ) a'dzzbc - —1 szcp + b U:c - %Q:cp

n L L
I:z ‘7%; (‘72 + o'q p) -+ (A ) a'a,bc - = Qabcp + a a'bc B chp

L L

Ij:c %,E (0'2 + 0-2 + 0-2;) + (UZbc - P Q:bo;:)

R* | (¢ + og 4 o3)




FACTORIAL EXPERIMENTS 965

Z (wtiojoktf — x....)z.
isjekef
The only exception to this last statement (when dealing with two or more fac-
tors) is when the numbers 7 js+ are all equal.
The statistical model appropriate here is identical with that used for Section 9
and is developed in Section 12. Table 4 gives the ems for this analysis, with no
additivity assumptions. We employ the notation

n—l—* = a_}JZ i‘jz':k' (mi*») = average value of elements of the set {miw} .
Definitions of components of variation are the same as in Section 9 and are
detailed in Section 12.

The advantage attached to this analysis of variance is the simple structure
of the expectations of mean squares, as opposed to the very complex relations
exhibited in Table 1. In fact, if all mean squares in Table 4, except R**, are
adjusted by multiplying by n* then, speaking rather loosely, this analysis may
be superficially interpreted in a similar way to an analysis for a case with equal
numbers in the cells. (For equal numbers, n* becomes simply r.)

The discussion given in the preceding section in connection with difficulties
when unit-treatment interactions are not negligible applies also to the non-
orthogonal analysis. If unit treatment interactions are negligible, then one can
obtain from linear combinations of the mean squares of the non-orthogonal
analysis unbiased estimates of the various components of variation of interest.
For example, with negligible unit treatment interactions an unbiased estimate
of o2 is given by

1 (C — ¢ I 1
: [Itt -5 (Iﬁ’so - R**) — ﬁR**].

The relation of this to the selection of appropriate “error terms” to serve as de-
nominators in F-type comparisons of mean squares will be apparent. The rela-
tion to the estimation of variances of linear estimates is no less immediate and
is dealt with explicitly in Section 14.

If one has a situation involving proportional but unequal numbers, the ques-
tion arises whether one should employ the orthogonal analysis based on weighted
means or the non-orthogonal analysis based on unweighted means. In the present
state of knowledge it appears to be a matter of taste, convenience, and opinion
as to which analysis is more advantageous. (Some recent relevant references on
this point are Cox [2] and Tukey [11]).

The non-orthogonal analysis has the advantages of wider generality, easier
computations, simpler terms and more direct connection with the estimation
of linear contrasts among treatment effects. Furthermore, speaking very loosely,
the non-centrality enters into the mean squares of the non-orthogonal analysis
in a more easily appreciated and more symmetric fashion than for the ortho-
gonal analysis.
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The questions of efficiency of estimation of components of variation and of
sensitivity of significance, as regards these two analyses, are still open.

11, One factor, general numbers. The case of two factors may be obtained as
a special case of the three-factor development by putting C = ¢ = 1. We will
not deal with it explicitly. The case of one factor can be obtained by putting
B = b = 1, in addition. Because of some peculiarities in this situation we give
some brief discussion below.

The one factor case corresponds to the within and between analysis of variance
and has the associated property that an orthogonal analysis always exists what-
ever the numbers of observations corresponding to the various levels tested. On
the other hand one still has the choice as to whether to analyze weighted or un-
weighted means of observation corresponding to the levels tested.

The residual mean square is the same for both analyses. For the proportional
analysis

A* = a — 1)211,,*(27,* ot ..),

where

Z Tixf 5

#Mok af

Tiv, = ;; D Taey and z.. 2
E(A ) + rU —= 1) I: I—) Qap:l ’

2 2 2 2 2
where gy = 0'2 + Op + Ogy Ngx = U, U = Z,,'* Ui U* = Zi* Ui* / U-. FOI‘
the non-orthogonal analysis,

*E = z.)%, where Z.. = %Z Tix;
1 1 1 1 1
E(A**¥) = — a0 + [ ~ 5 Qﬁ,,:l ,  where il ; g

Thus, in the non-orthogonal analysis of variance equal weight is given to each
observed level of the factor. In the case of a single factor there does not appear,
offhand at least, to be any basis to suggest that one analysis will be, in general,
superior to the other.

12, Derivation of models and ems. Our attention is directed in this section to
the following main items: (i) definitions and physical interpretations of the
parameters of the population model; (ii) the explicit development of a formal
statistical model for the observations; (iii) definitions for the various components
of variation; (iv) illustration of the use of the statistical model in the derivation
of ems.

In Section 6 we gave a conceptional framework for the analysis of the general
three-factor completely randomized experiment. This specified as the background
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population a set of ABCP (unknown) numbers, {¥Y;;m}, the “true” or “typical”
responses. A useful and meaningful representation of these is the one implied
by the definitions

=Y.,
a; = Y{... — M,
bj = Y] - M,

=Y. —pu,
(@b)ij = Yijo = Yieoo = Yojoo + g,
(@) = Yig. — Yoo — Yo + i,
)i =Y. = Y.joo. = Yoo + 1,
(abc)isk = Yijp. — Yijo. — Yigo + Yiuno — ®e)ix ,
Pn=Y.n—p,
Qiskm = Yijgm — Yige — Yoo + .

It is easy to check that the sum of all the components defined above is iden-
tically equal to Yjtm . We have now

(1+A+B+C+AB+AC+BC’+ABC+P+ABCP)

quantities, in place of our original ABCP, but the following properties indicate
the dependencies:

0= Z a; = Z bj = :Z‘ Cx = ; (ab)ij = ;{(ac).k = Zk (bc)jk
1 J K 1 7
= Jzk (abe)in = ;n: Pm = %; Qijkm = ; Qijtem -

These relations follow by definition of the parameters and not by assumption.

The quantities defined above can be given physical interpretation. We shall
do this for representative cases:

u is the “true” over-all conceptual response if all treatment combinations
were applied to all experimental units.

a; is the difference between the mean of the “true” responses if all treatments
consisting of the 7th level of @ in combination with every level of ® and every
level of @ were applied to all experimental units, and u; we refer to a; as the
main effect or simply the effect of the ith level of @. It should be noted that
@i — ay is the difference between the responses due to level i of @ and level ¢’
of @ averaged over all levels of other factors and all units,

(ab)s; is the difference between the effect of the Jjth level of ® in combination
with the sth level of @ and the main effect of the Jth level of ®. (The symmetry
between @ and ® is obvious from the definition of (ab);;.) We call (ab);; the
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interaction effect, or simply the interaction, of the ith level of @ and the jth
level of ®.

Pn measures the difference between the mean response from all combinations
of levels of @, ®, and € on unit m compared to u. Thus the p,, measure the
(average) variability of units with respect to the treatment combinations.
Because of the direction of our interest, we refer to the p,, as the additive unit
errors or simply as unit errors.

@ijem is similarly seen to represent the interaction of ‘treatment combination
(4k) with unit m: and we refer to the ¢.yn as interactive unit errors or unit-
treatment interactions.

A number of items deserve explicit mention even though some have been
indicated in the literature, specifically by Yates [16, 17, 18] and others. (1) The
definitions of effects and interactions are relative to a given scale of measurement
of response. Transformations of the scale would lead to radically different effects
and interactions associated with the treatment population. To speak of the
main effect of level 2 of factor @ as being large is meaningless unless a particular
scale of response is implicit. Similarly the entire concept of interaction has
meaning only relative to a given scale. Two factors can, with no contradiction,
have negligible interactions on one scale and large interactions on another scale.
(2) For a given scale of measurement of response, the definition (and inter-
pretation) of, say, the effect of the ¢th level of @ depends not only on all other
levels of @ included in the experimental population but also on all levels of all
other factors as well as on the relevant population of experimental units. The
generalization to other effects and interactions is immediate. It is of interest and
importance to note that the difference of the effects, say a; — ai, of two levels
of @ becomes independent of other levels of @ under consideration but remains
entirely dependent on the levels of the other factors and the population of ex-
perimental units. (3) If we have a scale of observation such that, for instance,
all interactions (ab);; are negligible, or @ and ® are additive, then the difference
a; — a; becomes independent of which levels of & are included in the study.
This points up the enormous simplification in the summarization of relevant
information and in understanding of the situation which is effected when we can
operate on a scale in which interactions may be neglected. (4) If the levels of
factor are essentially identical in terms of their influence on response, then, on
any scale, interactions with that factor will be negligible. Similarly, if experi-
mental units are fairly homogeneous, then one would expect that, for most
scales of observations, the variability of units would be largely described by the
unit, errors, p,, and the unit-treatment interactions would be negligible. (5)
The “‘reparametrization” of the population of ‘“true responses” to effects, interac-
tions, and unit errors focuses our attention on summary properties of the ex-
perimental situation. This has the advantages that (i) the analysis of variance
mean squares are interpretable in terms of these parameters, which have a
physical interpretation; (ii) knowledge of certain of the parameters is often
essentially the information we desire from the experiment; (iii) by means of
the decomposition given by the population model it is often simpler to appreciate
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and evaluate assumptions which may be implicit or explicit in a particular pro-
cedure or inference.

We turn our attention now to the development of a formal usable statistical
model, for the actual experimental observations, in terms of the parameters
defined above. We recall that our experiment could be regarded as giving us a
random (within the restrictions of the design) sample, the {x: s}, of size
> i juex wjuax , from the set of ABCP populations represented by the random
variables {yijim}, Where ¥iitm = Yigm + €ijim- To write an explicit model
for the xujus, it is useful and convenient to employ certain “dummy” random
variables which we now proceed to define.

Let of’ = 1 if selected level :* of factor corresponds to level 7 in the popula-

tion of levels of @;

= ( otherwise.

Thus, if the 2nd selected level of factor @ corresponds to the 5th population level
of factor @, then o = 1. .

Similarly we define the sets {8’} and {y% }.-

Because of the specification of random selection these quantities are random
variables some of whose distributional properties are easily written down. For
example; (1) The {ai'}, {85}, {v¢} are groupwise statlstlcally independent;
@) Pr (of" = 1) = 1/4; (3) P(ai'ais = 0) =1,i5 4 (4) Plai'al =1) =
(1/A(A — 1)), o* = %, 5 = ¢/; (5) P(8F = 0) = (B — 1)/B; etc. We note
that the o’s, 8’s, and v’s are associated with the random selection of the factor
levels to be tested.

We turn now to the specification of association of selected treatment com-
binations with experimental units. To this end we define

8, 7%/ = 1 if the fth replicate of selected treatment combination (z*/*k*)

is tested on unit m of the population of experimental units;

= 0, otherwise.
In view of the random selection of units for test and the randomization of treat-
ment combinations to experimental units, it follows that the {55’ °7} are
random variables with the following properties: (1) They are statistically inde-
pendent of the o’s, B8’s, and v’s defined above; (2) P65’ = 1) = 1/P; (3)
P(a""""&"""k"" =0) = 1, (%K) = @5k*f); (4) P@n oni ™ =
0) =1, msm'; (5) Pu™ o™ = 1) = (1/P(P — 1)), (**kY) =
@ *¥EMf), m = m'; ete.

It is now simple to write an explicit model for the observations Zujsss , as
follows:

Zivjorey = p + Z aia; + Z Bib; + kE vi o + Z ai B} (ab)y;
% J (¥
+ ; aive (ac)in + Zk Bk (be)in + Zk ai By (abe) s

+ > 0 p, + Z "Bk 80 T (Gisim + €sitm).

i7km
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The correspondence of terms between this and what is given in Section 7 will
be apparent on inspection.

From the point of view of our development, the random variables in this
model are the o’s, 8’s, v's, and §’s, which take on the values 0 and 1 with probabili-
ties specified by the experlmental design and procedure, and the ¢’s. All other
quantities are regarded as fixed, unknown parameters defined on the array of
“true” responses {Yjkm}.

This model, together with the properties of its components, contains all the
implications of our procedures of random selection and allocation, as well as all
assumptions we have made in the conceptual frame of reference for the analysis.
It is in a sense “sufficient” for the general experimental situation and design, to-
gether with the additional assumptions which we made explicit in Section 6.
This model can therefore be employed quite formally in any statistical manipula-
tion or evaluations of the experiment, without reference to any other features.

The complexity of the model is only in its initial appearance. It is easy to handle
in algebraic manipulations and, in particular, makes into an elementary alge-
braic operation the evaluation of expectations of various functions of the ob-
servations.

Toward the end of this section we shall illustrate how the statistical model is
employed in evaluation of expectations of analysis of variance mean squares.
Before doing this we give the explicit definitions of the components of variation,
which have appeared in the ems in previous sections, in terms of the components
of the populatlon model. These are as follows:

R e O OL T R 3y PR S S 0.1
C—-1%

A —1 B—1%5

ot = . > (@b)y; ol = 1 > (a0)h;
PTU@=DB -G P T @A -DC =1

2 2 1

Tye = (B_—I)TC———Z (be)% ; ) Oabe = A-DB-DC=D% Z (abc)uk,

. 2 2 B(n):
Op = (P — 1) me, Og = m Z q,,k,,., o = E(e,,km),

‘I]m

2

1 2
ap (A—l)(P—l)Zq‘ m ) pr (B'—].)(P'—l)ijm’

2 1 2
%= gonE =D & O

: = 1 iJ — q; —_ . 2,
Qar = A-1B-1nP-1) % (Gim = Gioom = Qjm) s

2 1 .
Qacp = A@=-DC—-DFP=1) % E (Qikom — Qiom — Qotom)’;
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Qer = - > (Qoiom = Qiom — Gt
b2 = B 1)(C — (P — 1) G TAn T Lim T Ll

G = T DE-DETET

1%;1" (qijkm — Qijom — Qickm + Qivom — Q-jim + q.jm + q..km)z,

With the exception of o> the definition of these components is according to
the scheme

(sum of squares of quantities)
(no. of quantities — no. of linear dependencies)

While there is no doubt that the o, of , etc., reflect the variability of the
populations {a;}, {b;}, etc., some further justification for the method of choice
of divisors is in order. An important (and perhaps sufficient) justification is that
such a method of definition simplifies the appearance of the ems and the vari-
ances of certain linear estimates. For further insight we might argue that the
measure of dispersion wanted for, say, the {a;} is essentially that for the {Y...},
a fundamental measure of the dispersion of which is one of Gini’s mean dif-
ferences, namely, the average of squares of differences between pairs from the
population. For the case of the {Y...} thisis

-1 oy
Ga = m ,';I (Yp.. Y, ...)

-2 S (. - 1.

= =72 T = Y)

= 205.

(The factor 2 arises because each pair, in inverted order, appears twice.) The
same argument applies to o3 , o> , and o5 . For the case of a measure of dispersion
of, say, the {(ab);;}, we might argue that this should reflect the magnitude of
interactions in the two-way array {Y.;..}, a fundamental measure of which is
a mean square ‘“double difference”

1 2
Ga = ABA-DE =D > (Vi — Yijr) — (Yurjo. — Yz )P

i
Now the quantity in square brackets is; identical with
(ab)ij — (ab)iy — (ab)irj + (ab)ws ,
and remembering that Y _; (ab);; = >_; (ab);; = 0, and hence that
2 (ab)i = — 2 (ab)ii(ab)yr = — E (ab)ij(ab)er; = ;;-' (ab)si(ab)irse,

i5 KR T 2
J#d’ j i’
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it is easy to find that
qu = 40’35 .

(Again, the factor 4 arises because essentially the same quantity is permitted to
appear four times.) The same argument applies to o3 , 03 , Q3p , Qbp , and @2, ,
and can be extended in the obvious way t0 s , Qebp , Qocp » Qbep » and Qapep -
The structure of the Q* quantities is, from their definition and that of gijim ,
such that they reflect interactions of treatment factors with experimental units.
For example
2 1 2
%= g DE =D > 2 (Yim = Yo = Yo + Y.L,
which reflects the interactions of levels of @ with experimental units. In view
of the role which the unit treatment interaction components of variation play
in the ems, it was felt that a distinctive notation for them would be worth while.
So far as their formal definitions are concerned there are no distinctions between
the o”’s (except o2) and the Q%s.
The essential reasons for the definition of o which was used are that o> ap-
pears in the expectation of the residual mean square and that such a definition
shortens some of the formulae. It is easily checked that

4 - 1)(C i) (B —DIC—-1)
+ T Qacp —'-—B—C—y— chp
A-1DB-1DC-1)
+ ABC Qabcp.

We proceed now to show how to use the statistical model in deriving the ex-
pectation of the @ mean square, A* = 1/(a — 1)A4’, for the case of proportional
numbers (Section 9). This will illustrate the basis for the results given in previous

sections.
We have

> najs@inee. — ) = VW X wis(@ie.. — 2...)0
;i'

ivieke

The statistical model can now be substituted into this expression, and deter-
mining the expectation becomes a purely algebraic operation when one uses
freely the fact that the expectation of a sum is the sum of the expectations. Thus,

A = VWD s uslah — a* + (ab)k. — (ab)* + (ac)%. — (ac)*.
+ (abo)fs.. — (abe)¥.. + phc. — P F b =+ = LT,

where

* L * ]- *
af =2 af'as;  af = =2 unals;
3 U
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1 i
(ab):'- = Vv ;”r(ab)z':' = Z vJ‘a ; (ab)l'i;

J‘ll

(ab)* = Z wis Ve(ab) Tojo ;
‘l’J.
%* 1 iejrkef
[¥ees == 6 ’ m s
p russVW jomp P
m
* — 1 ,. ]c k* ,o,.kt[ B .
Qis... VW j;f 7 Yk Qijkm ;
t3km
etc.
It is easy to check that unlike terms in the above expression are uncorrelated.
For example,

B(alph.) = B ai'a)( 32 ™) = [ a:B@D][ Z pn EGH™)],

since the a’s and &'s are independent. But E(ai’) = 1/A4 for all 7 and 7*;
E@."™) = 1/P,

for all m, i*, 7* k* and f,and D ;a;i = DmPm = O. Similarly, the expectation
of all other cross-product terms may be shown to be zero.

(In the event that, for example, @ is fixed, i.e., A = a, one will in general
not renumber the levels at random, so that in our notation ¢* and ¢ would be the
same index in making the formal correspondence. As we mentioned elsewhere,
for symmetric functions of the observations (in our sample involving all levels
of @) no difficulty arises. In the section on linear estimation which involves non-
symmetric functions we shall give an extended notation. For the present, if we
use the convention that when A = a, 7* and 7 are the same index, then, for exam-
ple, Y iala; = a3, since ai = 1 with probability 1 and ai = 0, ¢ % ¢’ with
probability 1, using our convention. Then a?. would become a; , a constant, and
since E(pi...) = 0, the above result and its analogues remain true.)

Hence

EA") = rVW LausE{[af — o¥ + [(@b). — (@b)*]® + [(ac). — (ac)’]
+ [(abe)%s.. — (abe):.T + [ph... — p*.T
+ [f,;!'.... — ¢ P e — LT

Now,

Z U,‘E(a,t — a, = {Z u,.a,o -_— (Z Ui Ay» )}
= E{Z Uss (E ai'a)’ — Tlf (Z Ui Z af-'a,-)2}
= F {E U af‘a? — E ,uxi‘af 1 Z Uis Uger af-'a:::'a,-ai:} ,
iy

%7 U 1‘;51"
T’
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where we have used the facts that
P(ai’air = 0) = 1,1 % ¢/,
P(ai'ai” = 0) = 1,¢* = ¥

(i) = af’.

Recalling now that

hd — 1 i't ,:tf _ 1
E(ai) = 4’ E(ai air) = (—A-:_I—) ’
and Zz’;ﬁi’ ag; = — Zi a; , We obtain

2y (1 1 2 1
T (10 - ga o+ g = B, )

U al A -=1) 4 -1) . 1 . ,
=m—n@“w A 4 U+mﬂU—;wﬂ

=Ua§zl(A—1—AU*+ U+ 1 — U¥

Ul — U¥ai.

Hence the coefficient of o3 in the expectation of A* = 1/(a — 1)A’, the mean
square for @, is

(1-U%
(@ —1)
as given in Table 1. Note that if all ux = 1, which would be the case if the total
number of observations of each observed level ¢* of @ is the same, then U =
a, U* = 1/a, and the coefficient becomes rVW.
As another example we consider
Bl — ot = Y N I i
; uis Elpie... — p.)' = E {; Uss [ru,-—VW j;f Pm T ¢ > 6pm] } ,

T rHf
m

rUVW

b o
6:" 7 f

1 1 o1 ’
= S E{Z o (}_%Z‘f ap,,.> -7 (,Z;, 6pm> }

If the expressions in parentheses are expanded, it will be seen that a number of
the terms will vanish because of relationships like

P(si ™5™ = 0) = 1, m = s

where § denotes

and
P(a:';:'kva:';'i"k"f' — O) — 1’ ('i*j*k*f) £ ('i*'j*'k*'f’) .
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If we also use the facts that

E(a::j.],—f) — —_1_

B a"'v"k""> = EE o ™ G = @R,
Z pm = —m;z DPmDm’,

and if we use (j*k*f) to denote D _ux/V , etc., then the expectation we seek to
evaluate is

Zp'z" 1 %o k. * ] k.
m,zwz{z [(kf) —P(P—)(ka;éf)

]. .* .*I*[— 1 -** *II
~ PP = )(J #= J¥E¥f’) PP = )(Jk #= k*ff’)

~ g G = = k) | = [ @ - A
G # ) + %% )
R KT @ T < BT
@ PR G A )
@ P R b i I ).

It remains only to write down the various values of the sums and collect terms.
Thus

(]*k*f) = 2 (1) = Z Nisjaps = TUss Z Vjs Wis = TU;s VW;
Jrk*f I%k* J%k*
G =)= > 1) = Z Nivjors(Nisjors — 1)
kS f!

= r*ul. Z Vs Z Whe — TU VW

= Pl VAW AW — rus VW,

(g* # ¥E¥f') = ¢y
EALO A 2 o
j‘#,j"
= Z Nisjops Nysjergs = 7’2 Ugs Z Vjeljsr Z 'l.Dko
jt#j" Jo#Jﬂ

= r'ubh(V? — VVHWW*,
(**k*) = rUVW;
@**k* = f) = FUUAVV*WW* — UV,
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G@** = FEHS) = FURURVE — VVHWW*;
etc. Thus the coefficient of . pnm is

1 1 _ _ 2 * 2 * 2 _ 3
AT B = ){Z — brus VW (P — 1) (FPUG V¥V WAW* — rus. VW)
— PV = VEVHWIW* — AuL VIV — W *)
— FAAVWEL — VHA — W)
- lU FUVWEP — 1) — GCUUSVVWW* — rUVW)
— AUPUVH(L — VHWIW* — FPUU*V V(L — W*)
— UMW — V¥(1 — W*) — AUQ — UXVV*Wew*
_ TZU2(1 — UVl — VHWeWw* — 7‘2U2(1 — U*)VZV*W2(1 — W*
— AUVWHL — UM — VH(1 — WH])
- 1 (P-4 1 —ruaVW{VW + Q= VW
rVW P(P — 1) "+ ’
+ VA =-W)+ 0 -V - WH
— P =D4+1—rUVWUVW +UQ-VW +TUVQ-W)
+UA=VYL=-WH+Q=UYWW +0-0U)1-VW
+U=UYWU=-W)+0-=0U)1-VH1—-WHi}
_ 1 1 _ (@ —-1)
FwpE -5 D= gwr -1
Thus the coefficient of o in the expectation of A* is
@e—1) 1
YWoyw @1 b

as given in Table 1.

In a similar way one can complete the evaluation of E(A’), proceeding from
component to component; and of course the other mean squares may be handled
in the same fashion. In view of the symmetry of factors one can write down, at
once, E’(B*) and E(C*) from the results for E(4*), and likewise for s, Iic
and I%c . A check on results is that the expectation of the total sum of squares
should equal the sum of the expectations.

The complexity of the formulae and also of the algebra is considerably simpli-
fied when the number of observations per cell is a constant, say r.

While the operations with the statistical model may appear tedious, this is
more apparent than real, in that with some familiarity with the technique a good
deal of the writing can be decreased through short-cut notation and simplifica-
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tion by inspection. Furthermore the operations are quite elementary and me-
chanical; and in addition to the symmetries we have mentioned, there are others,
such as the symmetry with respect to o2 and oz, in E(A*).

13. A more symmetric form for ems; extension of results. The general for-
mulae for ems may be put in a more symmetric form which is simpler in ap-
pearance and which makes very simple the extension of the results to four or
more factors. The modified form of the results involves certain linear combina-
tion of the defined components of variation in terms of which the expectations of
mean squares have the appearance corresponding to an “all factors random,
number of units infinite”’ situation. This general pattern for ems, involving ap-
propriate and definite rules for forming the linear combinations of components
of variation, has been obtained by one or both of the present authors for more
complex designs and situations than we have studied in this paper; ramifications
will be discussed in later communications.

We shall consider, for definiteness, the results of Table 1 on ems for the case of
proportional numbers. These results are given in Table 5 in terms of the following
notation:

_2_1 2 1, 1. 1 . 1 1 g 1
Ze = 04 ’B‘%b ‘C,U'ac PQup + B_Co'abc-l' BP Qabp + CPQacp BCP Qabcp .

2, and Z, are defined analogously.
1 1 1
Za = 0‘2(, —_ -C—,U:bc -"P'Q?:bp"' C-yI_)szcr'
2. and 2, are defined analogously. A

2 1 2
ZSabe = Oabe — ? Qabcp .

1 1 1 1 1
zr'_‘Ui—zQ:p_EQgp_6Q2p+;4—BQ§bp+;1—CQ3cp

1 . 1 2
+ B"_C chp - m Qabcy .

1 1 1
zar szw - E Qtzsz - Cy Qtzch + B—é Q:bcp J

2y and Z., are defined analogously.
Zan = @y = 5 @y
Zaep and Zp,, are defined analogously.
Zabep = Qibcp .
Zo = 0" + Zabep + Zbep + Zacy + Zabp + Zep + Zop + Zap + Zp
o+ ob + o
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TABLE 5
Symmetric form for the results of Table 1
Mean
squares Expected mean squares
A TUVWW (Ea + V*Eab + W*Zac + V*W*EabC) + 20
% (1—=7*
B TUVW —p(b-——l)— (Eb + U*Eab + W*zbc + U*Wl*zabc) + 20
% a—-w*
C TUVI’V W(C———]_)_- (zc + U*Eac + V*Ebc + U*V*ZGIM) + EO
I royw L= 000 = V) Ca + WH2ao) + =
AB (a — 1)<b _ 1) ab abe )
— U* —
fe | ovwE VA=) o4 vama) + 2
(@a— 1 —1)
Le | rUVW =T (Zre + U*Zae) + 2o
* (1=0Um0 = V1 - W
IABC rUVW (a - 1)(b — 1)(0 — 1) zabc + + 2o
R* 2o

An inverse relationship giving the ¢° and Q* quantities explicitly in terms of
the 2’s is easily written down.

The form of the results given in Table 5 not only makes entirely clear the pat-
tern for extension to more than three factors but alsoindicates what are, in general,
the estimable quantities in the analysis of variance. It will be evident that an
unbiased estimate, based on the analysis of variance mean squares, always exists
for each ) quantity in Table 5. It is of interest that the = quantities depend
only on the population sizes and not on the sample sizes.

To make explicit the pattern of extensions to more than three factors, we give
E(I'i5) when we have four factors @, ®, @, D. The notation and definitions
implicit should be clear. We use X as analogous to U, V, W, and X* as analogous
to U*, V*, W*, with definitions of components of variation as before. Then

1-U0%0-7v%
(@—=1D—-1
* (W*X*zabcd + W*zabc + X*zabd + zab);

E(I%s) = 3 + rUVWX

where

1
Sabed = Qabea — P Q:bcdp,
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1
Zabe = O'cztbc .D a'abcd Qabcp D Y2 Q:bcdp,

1 1 1
Zap = G'Zb - ’aazbc - D Uabd Qabp CD UZbcd

1 1
+ CT'P szcp + D“—“P Q:bdp - ’CTP Q:bcdp;

20=Ep+2ap+2by+ M +Eabcdp+0'21

ete.

Further discussion on the extension of results for expected mean squares to
other designs, on a more formal (operational) statement of definition of the =
quantities, and on the formal general reciprocal definition of the ¢ and Q°
quantities in terms of the =’s is deferred to a later publication.

14. Estimation of effects, interactions and errors. In many factorial ex-
periments one of the objectives of the experiment will be the estimation of con-
trasts such as ki, with D_;k; = 0, and in particular differences such as
a; — a; ; also the uncertainty (usually as measured by variance) of such esti-
mates needs to be estimated. The essential objective of this section is to illustrate
briefly the use of the statistical model in such ‘linear estimation’ problems.

To simplify the exposition we shall deal with the case of two factors, which
is equivalent, formally, to putting C = ¢ = 1 for the situation we developed
earlier. We can now drop the subscripts £ and k* and all interactions involving
€. The population model becomes

Yiim = b+ a; + b; + (@b)i; + Pm + Gijm + €ijm -
The statistical model becomes

Bivjeg = w2 ol + 20 670 + 2 oF'6Y (@) + 2 87 pa
+ Z Hy “J.,(qu‘m + fwm)~

ijm

We recall that our experiment involved the random selection of a levels from 4
of factor @ and b levels from B of ®, where ¢ < A, b < B, and the random
allocation of the ab selected treatment combinations to randomly selected ex-
perimental units (from a population of size P), so that each selected treatment
(1,*]*) appeared Tk j* times, Tk jx ; 1.

For the case of A > a, B > b the association of n«;+ values with population
treatment combinations (¢) is a random one. For the case of @ and ® fixed
factors one of two situations might exist, namely when ¢* and ¢ (and j* and j7)
are taken as the same index or when the range of 7*(j*) is a random permutation
of the range of 4(j). In the first case we can speak of having n; observations for
treatment combination 47; in the second case we have (Z,* 7 ab B nisj») Observa-
tions, a random variable having average value 1/abY i j nisjs , for treatment
(#). To bypass this difficulty, we shall consider in this paper the case of equal
numbers, i.e., naxx = r = 1, all 7¥7*,
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Under this last condition,

T = p+ as + 0¥ + (ab)h. + ph.. + gh.. +

where
i l »
at = 2 ai'a;, bf'=5 870 ;
i FAd]
@k =1 3 a8l @);  ph. = = Z 5" D
J*ij J’fm
etc.
With no further restrictions an ¢ < 4, b < B, let us put
) E a,- m;...
x'" = % ]
a;

when the right-hand side is determinate. This quantity will be indeterminate
whenever population level ¢ of @ is not included among those actually selected,

for then both numerator and denominator above will be zero. Then, when
z'" exists, the denominator above is 1 and

T =p+a + Z ai ¥ + (ab)h. + ph. + g + €&.]

et o+ ; > 68 + ; X B @by + X allph. +qh + €51
Fad] FAd] i*

It should be noted that this statistical model for z*** is conditional on level
of @, havmg been one of the selected a levels of @; hence, in this expression, we
take P(ai = 1) = 1/a, which is the condltlonal probability that selected
level * corresponds to population level ¢, given that 7 is selected.

In the last expression, all terms after the first two on the right-hand side have
expectation zero, whatever the relation of B to b. For example

B2, aiph.] = B| F p 2l 2 et m] 2 (X pm) = 0;
) j*fm baP i*j*f m
E[Z a::'q:-'o..] - E 1 Za .Ef ; ;o p/ ijm]
- E Z 2 ,o J. ,o,o,qum]
t‘:‘f jm
1111
- rb&TBT),Z,:.,; (2 aum) = 0;

ete.
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Thus z* " is an unbiased estimate of
® + a; = Y, ,

which is the conceptual over-all mean ‘““true’ response from all (population)
treatment combinations involving level 7 of @ on all (population) experimental
units. Hence, an unbiased estimate of the difference of the main effects of levels
iand ¢’ of @, a; — a;, is given by (z' — 2% ), when both of these quantities
are determinate, independent of whether either @ or ® is fixed or not, and in-
dependent of whether interactions of factors with each other or with units are
negligible or not.

It may be appropriate here to emphasize that the difference (a; — a«) is
independent of the other levels of @ under study but is very much dependent, in
general, on what population of levels of ® and of experimental units is under
constderation. (Note that the preceding sentence i'efers to population param-
eters and not to sample estimates.)

In con51der1ng uncertainties involved in the estimation of (a; — ai) by
(" — z¥"") it is clear from the model for 2" that the estimate will be af-
fected by the interactions of levels 7 and 7’ of @ with levels of ® only if ® is not
fixed, for if @ is a fixed factor, then D ;; B8 (ab);j = 2.; (ab);; = 0, independ-
ent of 7. On the other hand if ® is not a fixed factor, then the term

1 ,‘T‘," 3;1'[(ab).~,‘ — (ab);)

does not vanish from (' — z ).
If factor ® is fixed and, further, unit treatment interactions are negligible,
i.e., all g;jm = 0, then

T 4

2 =2 = a— ap + e (af — ain)(@h.. + ).

The variance of this estimate is

BT i = &)k +ein )] = 27;_2 + B[S G - o) ( 5 sy >]

b jeim
20 s Lty f 2 K $* 0% E%50 S
E[(Z af'on™pn + 2 al'6n 607 po e
oS!
mzm
PR Y Py .. . o .
a; m p..p.,.') + (similar terms with ¢ for ¢)
g8 L] ’
i

23 T e

t*i% oS’

mxm/’
$% {8 qivgef ./ o
+ 2, 2 o el e )]
1051

Fe Y maEm’

__202 b rlr—1b 70 —1)
‘ﬁfﬁﬁﬁ[(ﬁ PP=1) PP = 1))
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+( b + 2b(b—1)>]z 2

PP-1 "PP-D

=2 @+
Hence under the conditions that (i) unit-treatment interactions are zero and
(ii) ® is a fixed factor (i.e., B = b), the variance of the estimate of the difference
of the main effects of two levels of @ is estimated unbiasedly by 2R*/rb, where
R* is the “residual mean square’’ in the analysis of variance.
We consider next the variance of the estimate (z*"* — z* ") without the above
restrictions. Then

var (z*° — 1) = % (@® + o2)
d g i. 2
E [71) ,Z‘,‘ i ((ab)ij — (ab)sr;) + ; (i — af')Q?—-.]

=26+ oD + 5 B T B laby — @)l
+ 5 BF6E ab)y — @)elllab)r — (@b)es)

i=i’

1‘2b2 E[E Z ﬁ” '.J'J(It:)m E i Z ﬁJ. t.]‘fqﬂimr

~ 2@ )+ {E S (@) + @) — 2ab)glad)es]

— pO D S @ + @) — 2ealabed)
+$%B%"§%E%%]mﬁ”‘mP?%&;—ng;%M”
+ [I';bﬁ - H ] 2 Gitim = P(Pri)(l;)l_i(;) - ,; 9 jm8s’ 3" m
+ B 1B 5 e ¥ B =T 2 o= e}

- 2@+ g T ey — @l
+ % EP(_P}:—I_) [P — 1) 2 (ghim + divim) + 2 2 Gim vl
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06— |
5P(P — DB(B — 1) j;l (GiimQiirm + QitimQirirm 2ijm Qi* ' m)

_ 2 2 2 (B - b) 1 2
=5+ + BT 2 (@ — @)l
1 2
+ = " B(P Z (qum + qs tim) — b PB(P Z (an Qi jm)

b — 1)
bP(P _ I)B(B _ 1) ’E (q11m q“'jm) (Qii'm - Qi'j’m)-

Before considering the estimation of this variance we shall obtain a useful
related quantity, namely, the average variance of estimates such as (z*"" — 2" *")

1 §eo il
e PR SR
2 2(B—b 1 2
= ;5(0’2'1‘ 63»'}'0'927) +-6<——B——' [Uﬁb - I’thzﬂw] - T)Qﬁp>

2 [B(4% — rbol.
rb

This displays explicitly (what is after all obvious) the relationship of the average
variance of estimates of differences and the analysis of variance ems. Clearly this
average variance can be estimated unbiasedly only if conditions are such than
an “unbiased error term” exists for o2 , which will be true only when unit treat-
ment interactions are negligible or/and the population of experimental units is
very large. In general, the estimate of this average variance based on the error
term for o2 given in Table 2 will be positively biased, i.e., the variance will tend
to be overestimated. With regard to the component o2 we note that its impor-
tance in this formula for the average variance of estimates of differences of main
effects of levels of ® is determined by the relationship of B (the population size
of levels of factor ® to b (the sample size for levels of ®) and not by any con-
siderations concerning A and a.

If the average variance given above was felt not to be adequate as an estimate

of the variance of a specific difference (z** — z* ") one could carry out what
would amount to an analysis of variance involving only the observations of
’ . .
relevance, namely, those that go into (x — 2" 7). Thus if we extend our pre-
vious notation to
i
x,-,».,-: % Q5 Tinjeg , and x,'ja. - l E :z:”",
i* ro
s Of

then the sums of squares of this “partial” analysis of variance would be

2 PRV r ije. it g i.e\2
;z(xt __xz ); gjz‘(zu +x13 _z‘l _xl );
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%; (x“'j'. _ x,"'t‘ _ x,‘.. + xi'..)z : ’Z‘f [(xijuf _ x,',-a.)z + (zi']‘tf _ x,"jt.)lz;
i.e., sums of squares for level ¢ versus level 7’ of @; sum of squares for levels of
® averaged over levels 7 and 1’ of @; sums of squares for interactions of levels of
® with levels 7 and 7’ of @; and residual. Clearly this partial analysis of variance
will bear the same relation to the variance of (' — z" ) as the complete analy-
sis bears to the average variance of differences.

When interactions with experimental units are negligible, the residual mean
square from the partial-analysis of variance will have the same expectation as
that for the complete one.

When B > b and the interactions of levels 7 and 7’ of @ with levels of ® may
be considerably different from the interactions of other levels of @ with levels of
®, it may be worth while carrying out the partial analysis of variance to obtain
estimates of the variance of the specific difference.

The preceding discussion can be applied symmetrically to factor ® and be
extended to a three or more factor situation. Similarly the statistical model can
be employed formally to answer questions involving the estimation of specific
interactions, or differences of such, and to find variances of such estimates.

So far as experimental unit variability is concerned, randomization is fully
effective in providing unbiased linear estimates and in giving unbiased estimates
of the component of variation corresponding to the additive unit errors; but, in
general, randomization does not lead to the unbiased estimation of the con-
tribution to variances of linear estimates due to the interactive unit error. It is,
however, probably true that in many situations this latter bias will not be im-
portant.
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