SOME PROPERTIES OF GENERALIZED SEQUENTIAL
PROBABILITY RATIO TESTS!

By J. Kierer anp LioNerL WEIssS

Cornell University and University of Oregon

0. Introduction and Summary. Generalized sequential probability ratio tests
(hereafter abbreviated GSPRT’s) for testing between two simple hypotheses have
been defined in [1]. The present paper, divided into four sections, discusses certain
properties of GSPRT’s. In Section 1 it is shown that under certain conditions the
distributions of the sample size under the vwo hypotheses uniquely determine
a GSPRT. In the second section, the admissibility of GSPRT’s is discussed, ad-
missibility being defined in terms of the probabilities of the two types of error
and the distributions of the sample size required to come to a decision; in par-
ticular, notwithstanding the result of Section 1, many GSPRT’s are inadmissible
In Section 3 it is shown that, under certain monotonicity assumptions on the
probability ratios, the GSPRT’s are a complete class with respect to the prob-
abilities of the two types of error and the average distribution of the sample
size over a finite set of other distributions. In Section 4, finer characterizations
are given of GSPRT’s which minimize the expected sample size under a third
distribution satisfying certain monotonicity properties relative to the other two
distributions; these characterizations give monotonicity properties of the decision
bounds.

1. Uniqueness of certain GSPRT’s. In this section we identify a GSPRT with
the two sequences of limits characterizing it. Using the same notation as in [1],
we assume that the Lebesgue densities f; and f, satisfy the conditions in Section
2 of [1], even for ¢ equal to zero or infinity (i.e., the probability. ratio for any
number of observations takes on no single value with positive probability), and
are continuous (this last restriction is easily weakened; see also Remark 1 at the
end of this section for further generalization).

First we make the transformation Y; = Fy(X;). Under H,, Y; hasla rectangular

distribution; under H, , the density of Y; will be ¢ (say), where f g9(y) dy = 1.
0
Next we make the transformation Z; = ¢[g(Y;)], where ¢(u) is strictly in-

creasing in u for u = 0, ¢(u) takes on no values outside the interval [0, 1], and
also

f dy=1¢ for 0t < 1.
{violo(y) 1t}

Under H;, the distribution of Z; is rectangular, while under H, , the density of
Z;is ¢ '; we note that ¢ (2) is strictly increasing in z for 0 < z < 1 and is 0 else-
where.
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58 J. KIEFER AND LIONEL WEISS

Since we can always transform from X;, X,, --- to Z,, Z,, --- and carry
out any GSPRT in terms of Z;, Z,, - - - , from now on we assume that f;(z) = 1

1
on [0, 1], and fa(z) is strictly increasing in z for 0 < z < 1, with / folx) do = 1.
0

We also assume f, piecewise differentiable (for the sake of obtaining the g; below).
Any GSPRT is carried out by seeing whether

b < Hfz(X,) < am, ete.,
i=1

or, defining Q; aslog f:(X;), Bnaslog b, , A, aslog a,,and W, as@Q, + Q. +
-+ + Qn, whether B,, < W,, < 4., ete.

Denoting by g: the density function of @, under H; , we find that g.(q) = €* -
¢i(q) identically in q.

Suppese the m — 1 pairs (a;, b1), -+, (@m-1, bm_1) are fixed. The joint con-
ditional density function of (@, @, ---, @) under H,, given that sampling

continues beyond the (m — 1)st observation, is

III gi(Qj)

=
K;

hz((h sl qm) =

in the region {b; < w; < a;;j=1,--- ,m — 1};hlq, - ,qn) = 0 elsewhere.
Here K; = P {sampling coutinues beyond (m — 1) observations under H;}, and
we assume K; and K. are positive. Thus

K u
holqe, -+, qm) = =.¢ ""h-1(th" s Q) -
Ixo

Then, denoting the conditional density of ¥, under H; given that sampling
continues beyond m — 1 observations by I, we have

kay(w) = f: - I(w)-e”.
Now we make the following A ssumption A: f is such that g:(g) > 0 for almost
all q(z = 1, 2,); thus, if S is any nondegenerate interval, f gi(q) dq > 0 for ¢ =
S

1, 2. But this implies that if T is any nondegenerate interval, / ki(w) dw >
,,

Oforz=1,2.
For any given positive numbers C, D, we now show that there is at most one
solution (v, §) to the two equations

f: ky(w) dw = C, fa ko(w) dw = D..

For, given any v which can be the first element of a solution, let é(y) be the uni-
quely determined value of 5 which satisfies the first equation. Then it is easily
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verified that

() ()
j; ko(w) dw = ]; %  ky(w) - €’ dw

is strictly increasing in v. This proves that there is at most one solution (y, 8) to
the two equations.

Let Dy(n; T) denote the probability that a decision is reached after no more
than n observations when using the test 7 and H, is true. The considerations
above yield

TrEOREM 1. If Assumption A holds, and if T is a nontruncated GSPRT, then
there is no GSPRT T" different from T and with D;(n; T') = Din; T) for all n
and for i = 1, 2. If Assumption A holds, and if T is a GSPRT truncated after m
observations, while T’ is another GSPRT with D;(n; T’) = D;(n; T) for all n and
for i = 1,2, then T and T" differ only in the terminal decision boundary at stage m.

Remarxk 1. If Assumption A is violated, there are two different GSPRT’s, T
and 7", with D;(n; T") = D;(n; T) for all » and for ¢ = 1, 2. For we can find a
GSPRT T whose first pair of limits is (B;, 4;), such that for a positive e,

At e
fA g1(q) dg = 0.

But then 7" can be taken as the GSPRT whose first pair of limits is (B , 4; + ¢),
the other limits agreeing with those for T. The inessential difference between
T and T" in such a case as this will be evident to the reader: every sample sequence
in a set of probability one under both H; suffers the same fate under 7" as under
T. Similarly, in the discrete case (or where ¢; can take on some constant value
with positive probability), there is the aspect of randomization in which two
tests with identical D;(n; T) may differ (e.g., if T' and 7" both always require
at least 3 observations, for some value of @, + Q. + @;, T may stop after 3
observations if @) < Q. , T if @, < @). With these modifications in mind, it is
evident that Theorem 1 is of broader validity than its stated form.

ReMaRK 2. If Assumption A holds, one can prove similarly that there is at
most one GSPRT having given values for the elements of the following sequences
of probabilities:

{ P(accepting H; under H; at stage n)},
{ P(accepting H, under H, at stage n)}.

Incidentally, it is easy by the methods of [1] or [2] to show that the GSPRT’s
(and k-decision problem analogues) form a complete class with respect to the
generalized risk function consisting of such sequences. A similar remark applies
if these sequences and the D;(n; T') are considered together as the risk function,
etc.
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2. Questions of admissibility.” We have proved in the previous section that
under certain conditions there is at most one GSPRT corresponding to any two
specified distributions of »n (one under each H;). This does not imply that all
GSPRT’s are admissible (letting a; = probability of an incorrect decision under
H; and p}, = probability that the experiment terminates after more than n ob-
servations under H;, a GSPRT is said to be admissible in this section if there is
no second procedure for which all of the numbers o, and pf, (i = 1, 2; n = 0,
1,2, ---) are no greater, and at least one is less, than for the given procedure);
as we shall see in a simple example below, the general uestion of how to charac-
terize the admissible procedures seems quite difficult. Before turning to this
example, we make a few remarks on admissibility. Firstly, it is clear that admis-
sibility does not entail any simple monotone character of the constants a, and

b. : on one hand, putting p,, = probability of terminating after n obscrvations
under H;, on considering the minization of
2.1) 2k [ai Wi+ 2 D pm] where Di, = 3 Ca,\

=1 n=1 1

where the C, are an increasing (resp., decreasing) sequence of positive numbers,
by comparison with the case Ci, = 1, it becomes clear that we may have ad-
missible procedures with a,.T, b.| (resp., a.|, b.T); similarly, there are admissible
procedures with a.T, b.T or a.|, b.]. (In the case C..T (resp., C..0), it is also
interesting to note that a™ =< an < b, < ™ (resp., an < o™ = 0™ < b,),
where a'™ and b™ are the constant bounds for which (2.1) is minimized when
Cin is replaced by C; m4a for all n.) On the other hand, by considering C,, =
(h: + k) + (—1)"h;, one may obviously obtain admissible procedures for which
An = Qnyz, bn = boys, @2 < Azppa < bana < bsn for all n. Other admissible pro-
cedures for which the a, and b, have no simple monotone character may be con-
structed similarly.

Secondly, one can sometimes give simple necessary conditions for admissibility
(a sufficient condition such as that of being the essentially unique procedure
which minimizes (2.1) for some choice of the constants ¢, W, C;, will usually
be hard to verify). Suppose, as before, that every interval of positive values
(but no single value) of Fa(x)/fi(xz) has positive probability under both H,.
Let N be the smallest integer for which ax = by (if no such integer exists, write
N = o). Then a necessary condition for admissibility of a GSPRT is
2.2) sup a, < inf b,.

n<N41 n<N+1
To see this, note that for any Bayes solution minimizing (2.1) the constants
&, Wi must satisfy a. = (Wi&/Weks) < b, for alln < N + 1; thus, any Bayes
solution must satisfy (2.2). Since the essentially complete class of procedures
which is the closure in the sense of (Wald’s) regular convergence (see [3], [2]) of

2 In Section 2 the roles of the symbols a and b are reversed from what they are in
the other sections.
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this class of Bayes procedures satisfying (2.2) also satisfies (2.2), and since (see
Section 1) this class must include all admissible GSPRT’s, the necessity of (2.2)
is established. As will be seen in the examples below, the condition (2.2) is not
in general sufficient for admissibility.

We now give an example which will illustrate how complicated an explicit
delimitation of the admissible GSPRT’s seems to be. Consider all GSPRT’s re-
quiring at least 1 and at most 2 observations for testing H,:0 = 1 against H,:6 =
2 where

—0z
o -

)

Let X1, X, be independent with density f; ; write ¥; = ¢ *i. The hypotheses
can then be rewritten as H,:Y; have density fi(y) against H,:Y; have density
f2(y), where

_JLo<y<1
hy) = {0 otherwise

_J2y,0<y<1
Aly) = {o otherwise.

‘Thus, 3f:(y)/fily) = y, and we may write the general form of the GSPRT as:
@5) If Y1 < a (resp., =b), stop and accept H; (resp., Hs);
Ifa < Y1 < band Y1Y; < k (resp., >k), accept H; (resp., Hs).

Here we may assume a, b, k lie between 0 and 1 inclusive. If @ = b, k is of no
importance. If a < b, we may suppose 0 < k < 1, sincek = Qor k = 1 is clearly
inadmissible (replace b by b’ = a or @ by @' = b, respectively, to obtain bet-
ter procedures); also, since Y,Y, < Y; with probability one under both H,
and H., we may suppose k < a, since k > a is clearly inadmissible (replace a
by @’ = min (k, b) for a better procedure). All procedures with a = b are ad-
missible. To summarize, then, in investigating which tests are admissible, we
may eliminate certain trivial cases mentioned above and hereafter assume

(2.6) 0<k=a<bdb=l

The characteristics of any such procedure are easily computed and may be
summarized in the risk vector of any such procedure, which is given by the
quadruple

r(a, b, k) = {P (accept H,), P, (accept H,), Pi(n = 2), Py(n = 2)}

(2.4)

2.7)
( ={1—a—klog%,az+2k210g3,b—a,b2—a2}.

The question of inadmissibility or admissibility of such a procedure is then Eha_t
of whether or not there exists a test (G, b, £) for which all components of »(a, b, k)
are < the corresponding ones of r(a, b, k), with strict inequality for at least
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one component. Since no two different tests have identical risk functions (see
Section 1), inadmissibility of (a, b, k) is equivalent to (I) the existence of (@,
b, k) not identical to (a, b, k) and with (II) all components of r(a, b, k) < the
corresponding ones of 7(a, b, k). The latter condition (II) may be written

(a) —a <b—a
(2.8) (b) - a =V -d

() @+ klog(b/a) = a+ klog(b/a)

(d) &+ 2 log (b/a) < o + 2k’ log (b/a).
The possibility that & = @ may be eliminated in all that follows: if b = @, squaring
both sides of (¢) and comparing with (d) yields (¢ + & log (b/a))* < o + 2k
log (b/a); i.e., k log (b/a) = 2(k — a), which is impossible. Thus, we may here-
after assume @ < b..Also, @ = &k > 0 for admissibility. Thus, in particular,

0 < log (b/@) < o in all that follows.
Combining (2.8) (¢) and (d), we obtain

[ a— a+ klog (b/a) }2 s _ & —a + 2k log (b/a)
@9 e [0 log (b/a) ] =k = 2 log (b/a) '

In particular, the right-hand term of (2.9) must be >0. Thus, f(zr a given
a,bwith0 < a < b < 1, (2.9) can be satisfied for some £ with0 < £ < a < b
if and only if either

Q:;Q"I

a — a—+ klog (b/a) & — a* + 2k log (b/a)
(210) log (b/a) =0< 2 log (b/a)
or else
r(a.) O<a—d+klog(b/a)5d- and
@11 log (b/a) -
- b) <a — a—+ klog (b/a))2 < a — a + 2k log (b/a)
log (b/a) = 2 log (b/a)

Equation (2.10) implies
(a + klog (b/a))’ < & < a® + 2k° log (b/a),

the extreme members of which give 2a < 2k — k log (b/a), an impossibility.
Since the right side of (2.11) (b) is positive, we also see that the first inequality
of (2.11) (a) is implied by (2.11) (b): otherwise, we would again have the con-
tradiction 2a < 2k — k log (b/a). Thus, (2.8) (c¢) and (2.8) (d) may be satisfied
for some @, k, b with 0 < £ < @ < b < 1if and only if (2. 11) (b) and the second
half of (2. 11) (a) may be satisfied for some @, b with 0 < @ < b < 1. Write

¢ =log(b/a), ¢=log(b/a),\ =k/a, v = d/a.
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Equations (2.8) (a), (b) may. be written
(a) ¢=logll + (¢ — 1)/,
(b) &=3%logll + (¢ — 1)/4].

Since ¢, ¢ > 0, equation (2.12) (a) implies or is implied by (2.12) (b) according
to whether vy < 1 or ¥ = 1. We may write the restriction b =< 1 as

(2.13) ¢ =c— logby.

Equation (2.12) (a) implies (2.13) if vy = 1, since b < 1. If v > 1, (2.12) (b)
implies or is implied by (2.13) according to whether or noty < [1 4 (> — 1)]*>.

To summarize, then, (2.11), (2.12), and (2.13) imply that a given (%, a, b)
(and hence, (c, A, b)) is inadmissible if and only if there exist positive numbers
¢, v with either ¢ > ¢ or v > 1 (note from (2.9) that ¢ = ¢,y = limply k = &
and hence (@, b, &) = (a, b, k)) and satisfying

(@)  fily) = ¢ = fly),
(2.14) (b) ¢ Z fily),
(c) v < V1 + 2N,

(2.12)

where

Hily) = 1+ e —7)/v,
| log[1+ (¢ — 1)) if v=1,
(215) foly) = 43logll + (¢ — /Y] if 1<y <[40 — 1),
c—logby if v 2[4+ €07 — D"
fiy) = 201 — vy + 20/ (1 — ¥ + 2a%),

and where condition (2.14) (¢) merely expresses the positivity of the right side
of (2.11) (b).

Suppose A < 1 (the case A = 1 can be treated easily). It is evident that f;(1) =
\¢ < ¢ = fo(1) = f5(1) and that all points (y, &) with |y — 1| and |¢ — ¢| of
sufficiently small magnitude and for which ¢ < fa(v), satisfy (2.14) (a) (and,
obviously, (2.14)(c)). Hence, primes denoting derivatives, a necessary condition
for (a, b, k) to be admissible is that

(2.16) fal =) 2 f3(1) = fa(l +).
Evaluating (2.16) from (2.15), we obtain
1—e™ if b <1,

(2.17) l—e*<@—-1)/N= )
if b =
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On the other hand, the necessary condition sup a, < infb, of (2.2) may be
written 1/2 < A < ¢° /2, or (since A < 1)
{4e_°(1 —-e) i €<
(2.18) 0@ -1)/N=
~ if &2
Clearly, (2.18) includes many procedures not included in (2.17) (hence, not in
the complement of the set of procedures described by (2.14)). Thus, equation
(2.2) is not sufficient for admissibility.
We shall not consider this example further: it is already evident from (2.14)
that, even in simple cases, the delimitation of the admissible procedures can
become complicated.

3. Controlling the distribution of the sample size under distributions other
than those being tested. In this section we shall characterize (under certain
assumptions) an essentially complete class of tests (the risk function is given
below) for testing Ho:f = fj, against Hy:f = fy,,, sequentially, where the test

is based on independent random variables X;, X,, --- with common density
fs with respect to some o-finite measure u. There are specified values K and
6, ---, 0k, as well as non-negative numbers ao, a;, ---, axy; whose sum is

‘unity. The “risk function” of a procedure consists of the vector
K41
3.1 {Poo{accept H,}, Py, {accept HO}’-Zo a;Pyfn = jl,i=1,2, -- .},

where n is the (chance) number of observations required. We consider only
procedures for which Py,{n < «} = 1 for all 7. One procedure is said to be at
least as good as a second one if each component of (3.1) for the first is no greater
than the corresponding component for the second, and the notion of essential
completeness is relative to this definition of “as good as.”

We assume in this section that the fp,(0 < ¢ < K 4 1) are finite everywhere
and have the same region of positivity and, writing pim(z‘™) = 117 fo.(x5)
with 2™ = (21, --+, %), that the functions pin(@™) / pom(=™) and
Psnym@™) / pim(z™) are for 1 < ¢ =< k strictly increasing functions of
P+ m@™) / pom@™) on the domain of positivity of Pom (of course, this
means that either of the first two ratios can increase as the argument changes
from one value to another, only if the last ratio also increases); thus, the results
of this section apply to the case fy(z) = c(8)e*h(x) With 6y < 0; < -+ < g1 .
Our result is

THEOREM 3. An essentially complete class for the above problem consists of those
procedures which at the outset randomize between accepting H,, accepting H, ,
and taking a first observation, and which thereafter are GSPRT’s for testing H,
against Hy (with appropriate randomization rules on the boundaries if u s not
atomless).

Proor: A trivial modification of the argument of LeCam [2] (there are two
decisions, K 4 2 states of nature here) shows that an essentially complete class
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can be obtained by taking the closure in the sense of regular convergence (see
[2], [3]) of all Bayes strategies for the problem of minimizing

K+1

(32)  faPs,(accept Hy) + £x41bPog, (accept Ho) + Zo £ B, Ci(n)

for all @ > 0, b > 0, Ci(m) strictly increasing in m and approaching infinity
with m if ¢ is such that a; > 0 and Ci(m) = 0 if a; = 0 (actually, C need not
depend on < here, but must for the considerations of Remark 1 below) and all
a priori probability measures (%, &, - - -, £xy1). Each such Bayes strategy is
characterized by an initial randomization of the type described in the statement
of the theorem and by a sequence {D;n} (£ = 0,1, m = 1, 2, ---) of closed
convex subsets of the (K 4 1)-simplex S (whose elements will be described by
K 4 2 nonnegative barycentric coordinates whose sum is unity) with the
property that, @; denoting the point of S whose 7th barycentric coordinate is
unity, Qo € int Dy, (int denotinginterior in the usual topology of S), Qx41 €int Dy, ,
these interiors are (for each m) disjoint, and for 1 < j7 < k, Q; € Dy n Dy, and
Q; ¢ int (Dom U Dy) (see Chapter 4 of [3] or the paragraph following Lemma 4.1
of the present paper for details of arguments yielding these conclusions). The
Bayes strategy relative to an a priori probability measure £ = (&, - -, £x41)
is then (after some initial randomization as described above) to compute the
point £¢™ = £ (™) of S whose jth component is £p;jm(@™) / D 2t 0 im(x™)
(=0, --, K+ 1) after m observations and to accept H,, accept H; , or take
another observation according to whether £™ ¢int Do, , £™ ¢ int Dy, or
£™ & 8 — Dom — Din , with some sort of randomization if £™ isin the boundary
of one or more D;, (under our assumptions, if u is atomless, randomization is
actually unnecessary).

Since the class of procedures described in the theorem is compact and closed
in the sense of regular convergence (see [2]), the theorem will be proved if we
show each Bayes strategy has the structure enunciated in the theorem. But
if this is not true, there are values of £, a, b, the functions C;, and a number
n > 0 and values z™, y™ with £ @™) = £™(y™), such that & > 0 and
£x41 > 0 (otherwise, P{n = 0} = 1 for any Bayes strategy) and such that

(a) £7@™) e D,
(3.3) (b) £”@"™) gint Dy,
(c) P2 ™) / Pon™) > Dsnyn(@™) / Don(z'™),

or else there is a similar situation for Dy, (which is handled similarly). Now, the

convex subset of S spanned by £(z™), Qi, - -, Qx4 is a subset of Dy, which
consists of those points w = (wo, w1, -+, wg41) of S for which

(3.4) wily = wWol; for all 1> 0 for which t; > 0,

where E(n)(x(ﬂ)) = (tﬂ ) 141 y Ty tK+1)~HenCe7 ertlng E(n)(y(n)) = (20 1R, T, ZK+I))

(3.3) (b) would imply that zify < zot; for some ¢ > 0 for which ¢; (hence, &) > 0.
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Thus, for that ¢ (since also & > 0), we have
(3.5) Pin¥™) / Pon¥™) = Pin(&™) / Pon@™).

Since (3.3) (c) implies (by the assumption of this section) the negation of (3.3),
we obtain a contradiction and the theorem is proved.

ReEMARKks: 1. Essentially the same proof works to show that the essentially
complete class of Theorem 3 is essentially complete for the more general problem
where the components of the risk function are

K41

Py,{accept Hy1}, Pog, {accept Ho}, > a,Py{n 2 j}r=1,---,8;7=1,2,...)
=0

the a;, being given non-negative constants. One can also treat the case where the
finite linear combination in (3.1) is to be replaced by [ Py{n = j} dA(6) where
4 is a probability measure on a suitable family {Ps} of probability measures.
These considerations have obvious applications to practical problems where
the a; (or 4) represent the probability distribution of the process parameter.

2. Theorem 3 can also be proved using the method of [1]; in fact, a proof of
Theorem 3 can be obtained essentially by -going through the proof in [1] and
replacing P; and P, there by Y a:Ps, and making other obvious similar altera-
tions.

3. In cases like those of Lemma 4.2 below other than (3), the assumptions
of the present section are not satisfied; however, such cases can also be treated
here with only minor modifications of the above analysis.

4. Procedures minimizing En at a third point, etc. Let f_;, fo, fi be three
densities with respect to a o-finite measure . We assume no two of the f; are
identical almost everywhere (u). Let X7, X, , - -+ be independently and identi-
cally distributed random variables with common density f with respect to u.
It is desired to test between the hypotheses H_i:f = f; and Hy:f = fi. Let
a;(8) denote the probability that the procedure & terminates with an incorrect
decision when H; is true (¢ = =1). Let af be specified numbers satisfying
0 < af <1 (= =41). Let 4¢(8) denote the expected value of n (the number
of observations which have been taken at termination) when f = f, and 6 is
used. Our purpose here is to characterize procedures 6 which, among all pro-
cedures satisfying

(4.1) a:(8) = af (i = %1),

minimize 40(5). Under suitable assumptions (those of Sections 3 and 4 differ),
the class of procedures delimited in Theorem 3 will evidently contain the pro-
cedures which do this, but we shall obtain here a much finer characterization of
them. For the remainder of this section we shall term such procedures *‘optimum.”
To avoid trivialities, we hereafter assume of + a5 < 1.

We first note a fairly obvious property of optimum procedures. Let T be the
set of points in three-space of the form (a_1(6), a:1(8), 44(8)) for all possible 6



PROBABILITY RATIO TESTS 67

(not merely those satisfying (4.1)). Since one can randomize between two pro-
cedures at the outset, I is clearly convex. (The existence of points (a, b, ¢) with
¢ < o for any a, b > 0 follows from consideration of fixed-sample-size pro-
cedures. A convex combination of points giving positive weight to a point with
¢ = o will itself have ¢ = «.) For any procedure 4 satisfying (4.1) and with
strict inequality for either 7z = 1 or ¢ = —1, we may (by randomizing between
6 and a procedure requiring no observations) obtain a & satisfying (4.1) and for
which Ao(8") < A4¢(8); we may therefore restrict our search for optimum pro-
cedures to those § for which equality holds in (4.1). Among the class of all such
procedures there exists one minimizing A¢(3), a consequence of Theorem 3.1 of
Wald [3]. Let e(a¥;, af) = min; 4¢(8), the minimum being taken subject to
(4.1) (with equality). For all ¢ > 0 with ¢ < min (a¥;, af) we have (recalling
of + o) < 1) thate(a®; — ¢, af — &) > e(a’:, af); for otherwise, if equality
held, a randomization of the type noted parenthetically above would produce
a & satisfying (4.1) and for which A4(8) < e(a¥;, o), a contradiction. Since
e(aX; — ¢ of — € > e(a®;, af), and since for any value ¢ > 0 the points
(0, 1, ¢) and (1, 0, e) are clearly in T, it is clear that T' can not be supported at
(o1, of , e(e®;, af)) by a plane any of whose direction cosines is zero. Since T
obviously can be supported at this point by a plane with non-negative direction
cosines, we have

LeMMma 4.1. Any optimum procedure must, for some positive & , &1, & , mini-
mize

(4.2) fai(8) + £101(8) + &Ao(8)

among all procedures 8. (Conversely, any procedure minimizing (4.2) for some
positive £’s is obviously optimum for some al’s.)

Thus, necessary conditions on optimum procedures may be found by char-
acterizing ‘“‘Bayes solutions” which minimize (for a given & , £.1, &, all positive,
and whose sum we may take to be unity) the “integrated risk” (4.2). Results
like Theorems 4.8, 4.9, and 4.10 of Wald [3] (see also [4]) are easily seen to be
valid in the present case (with the two values of the loss function and cost of
experimentation altered from their unit values in (4.2) if desired). To summarize
what we need of these results, all procedures minimizing (4.2) for all possible
£ = (&, &, &) with & = 0, D& = 1, are characterized in the 2-simplex in
barycentric coordinates by two closed convex regions C_; and C; as follows:"
after m observations (m = 0, 1, 2, ---) compute the a posteriori probability
measure £™ for the given a priori measure ¢ = £ and the observed values
of X1, -+, Xn.Accept H_,, accept H; , or take another observation according
to whether £™ lies in the interior of C_;, C;, or the complement of C_; u C} ;
on the boundaries between regions, a Bayes solution may randomize in any
way (depending on X;, ---, X, if desired) between (or among) appropriate
actions. We now describe the C; . Let V; be the point where ¢ = 1( = 0, £1).
A point £ of C; will be called an <nterior or boundary point of C; according to
whether or not every Bayes solution with respect to § immediately accepts H;
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with probability one. Clearly (see p. 121 of [3]) V; is in the boundary of C; for
2 = =£1, and a line segment V,P (of positive length) of the line & = & is the
intersection C; n C; ; the curve VoPV; is the boundary of C;; on the segment
VoP, except at the point P where one may randomize among accepting H; or
H_, or taking another observation, a Bayes solution must stop with probability
one and randomize between accepting H; or H_, (analogous to Theorem 4.9
of [3]). Of course, a necessary condition for a Bayes solution minimizing (4.2)
to be optimum (for some of) is that it stop with probability one whenever
£™ = Vyor Vg ; we hereafter consider only Bayes solutions of this nature.

In order to obtain a more detailed characterization, we now introduce certain
assumptions. Write 2™ = (z1, -+ , ) and Pim(@™) = fu@)fi(@2) -« - fi(@m)
for m > 0 and =1 for m = 0.

AssumpTioN A. For each m and =™, 4™, if

(4.3) Pim(@™)p_imy™) Z Pimy ™ )p-im(@™),
then
(4.4) Pon(z™)P-1m(y™) Z Pon(y ™ )P-1m@™)
and
(4.5) i@ ™)Pon(y™) Z pin(y ™ Ipon(z™);

and strict inequality in (4.3) with both sides positive implies strict inequality
in (4.4) and (4.5).
AssumetioN B. For each z, , if

(4.6) fil@) = foa(),
then

4.7) So(x) 2 falx);
and, if

(4.8) fa(@) z filw),
then

(4.9) fo(x1) 2 fi(z).

AssumpTioN C:

: min[pin(@™), p_im(@™)] _
“10 BT ™) 0

where the supremum is taken over those ™ for which the denominator is positive.

Of course, if there is a value 2, for which f_;(z1) = fi(&1) = fo(z) > 0 (which
will usually not be so), then Assumption B follows from Assumption A. Assump-
tions A and B are related to the monotone likelihood ratio assumption which
occurs elsewhere in certain fixed-sample-size problems in statistics {e.g., [5]),
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but are not quite in that form, which (for a parametric class: put 8; = 0, 1
in our case) states (for n = 1) f3,()fs,(¥) = fo,(x)fo,(y) if 6, = 6,, 2 = y. In
Assumption A the z'™ are not necessarily simply-ordered (although a simple
ordering of certain equivalence classes for the purpose of the present discussion
will often be obvious), unlike the monotone likelihood ratio case; and, at least
for fixed n, it is easy to see by examples that neither of Assumption B and the
monotone assumption implies the other.

Before proceeding to the consequences of Assumptions A, B, and C, we note
that they will be satisfied in many important cases (see also Remark 12 below):

Lemma 4.2. If fi(x) = f(z, 0:) (z = 0, 1) with 6_; < 6y < 8, (the inequalities
may be reversed), then Assumptions A, B, and C are satisfied if f(x, 8) is (for
example) of any of the following forms:

{e—(z—o)’ > 0
(1) f, 6 = i

0, =6

(—» < 0 < o, u = Lebesgue measure);

~1

0<z<¥
(2) flz,0) = 0

otherwise
(0 < 8 < o, u = Lebesgue measure);
() f(z, 0) = r(6)e” (Koopman-Darmois)

(1 any o-finite measure not giving all measure to one point, r'(8) = ¢ du(z),
8 any value for which r(8) < ).

We remark that the case f(z, 8) = ¢(8)e””*® with g strictly monotone can be
reduced to case (3).

Proor: Cases (1) and (2) are easy to verify directly (note that the last part
of Assumption A is vacuous here). In case (3), we have [ [ i1 f(x:, 8) / f(y:, 0) =
¢’ where z = >°F (z: — y:); Assumption A follows at once. Next, we note -
(differentiating under the integral sign where necessary, which is easily justified
for any 6 € L, where L is the interior of the interval of values 6 for which r(§) <
) that, for6 & L, we have d° log r(8) / d6° = (Es:X)* — EeX® < 0, where Ey(X)
denotes the expected value of g(X) when X has density f(z, ). Hence, —log r(6) .
is strictly convex over the interval of 6 for which r™(6) < .

Putting fi(x) = f(z, 6;) with 6_; < 6, < 6;, equation (4.6) is equivalent to

1 r (01) >

(4.11) PR og o 2

-1,

while (4.7) is equivalent to the expression obtained from (4.11) by substituting
6, for 6, . Hence, we will have shown that (4.6) implies (4.7) if we show that
q(8) = (0 — 6_))"" logr(8) /r(6_,) is monotonically nonincreasing in 6 for
6 > 6_;. Thus, it suffices to show, for 8 > #.;, that h(8) = 0, where b(8) =
(6 — 0_1)°dq(8) /ds = [—logr(8) /r(6.5)] + (8 — 6_1)d logr(6) / db. Since
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b(6_;) = 0, it suffices to show, for § > 6_, , that 0 = db(6) / d6. Since db(6) / d6 =
(6 — 6_,) d” log r(8) / d6’, the desired result follows from that of the previous
paragraph. The proof that (4.8) implies (4.9) is similar (or may be obtained
from the preceding argument by replacing 8 and z by —6 and —xz).

Finally, let p be defined by 6, = pf; + (1 — p)f_;. Clearly, 0 < p < 1. Be-
cause of the strict convexity of —log r(8) we have, for some number h with
0 < h < 1 and for all z,

A few remarks can be made about restricted product problems in general. They
are mainly consequences of the fact that the risk function of & = (&, 8”) is given
by

(6.2) R;(0) = Ry (8) + R (6)
and are also valid for the slightly more general case
Ry(8) = pRs(6) + (1 — p)Ras(0).

(i) Bayes solutions. We mention first the following result, which was previously
noted by Duncan [3]. Let 6, and & be Bayes solutions of two component problems
with respect to a common a priori distribution A, and suppose that (3 , 8 ) is
compatible with the given set of restrictions. Then (30 , 80 ) is a Bayes solution
with respect to A for the restricted product problem. For let (87 , 87) be any other
compatible procedure. Then

[ 2@ 00 < [ Ry@ 2@; [ Ry 20 5 [ Ru@ n6),

and the result follows from (6.2).

(ii) Minimaz procedures. Let 8 and & be minimax solutions of the component
problems, and suppose that the same sequence of a prior: distributions {\.} is
least favorable for both so that

sup Ry (0) = lim [ Ry (0) dr(0),

sup Rg(®) = lim [ Ry (0) ),

where 6, and &), denote any Bayes solutions with respect to A, . Then if (8 ; 8 ) is
compatible with the given set of restrictions, the procedure §, = (8 ,80) is a
minimax solution of the restricted product problem.

To prove this we note as a consequence of the minimax property that

sup [R(0) + Ryy®)] < lim [ [Ry; 0) + Rig (0] M),

CORRECTION

Page 14, formula (4.12) through page 17, line 23 should be exchanged with page 70, line 8
through page 72, next-to-last line.
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while also

sup [Ryy(® + By®) = [ (By(® + Ruy(®) aa(®)

2 [[Ry 0 + Ry )] dra(0).

Hence
sup [Rey(®) + Ry(®) = lim [ [Ryg @) + Rg 0)] dMa(6),

which is a sufficient condition for 8, to be minimax.

(iii) Procedures with uniformly minimum risk. Let @ and @” be classes of deci-
sion procedures for the two component problems, and suppose that within these
classes the procedures 8 and 8, respectively have uniformly minimum risk. Let
€ be the class of compatible pairs (5, 8”) with 8’ ¢ €’ and 8” & @”. Then if (5 , & )
is compatible and hence belongs to €, the procedure & = (5, & ) uniformly
minimizes the risk within the class ©. This follows from the fact that if &; , 67
(¢ = 1, 2) are such that R (6) = R;(0) and Ry (6) < Rsy(6) for all 6, and if
8; = (3;,67) are both compatible, then R;,(6) < R;,(8) for all 6. This result
again extends immediately to the case of infinite products.

(iv) Unbiasedness. In an carlier paper the author defined a decision procedure
0 to be unbiased if it satisfies

6.3) EW(0', 8(X)) = LW (6, 8(X))

for all 6, ¢. For the type of problem with which we are concerned this means
roughly that on the average the actual decision is closer to the correct decision
than to any false one. In this sense the condition is an expression of the require-
ment that the decision procedure should not favor any one parameter value, or
any subset, at the expense of all others, but that it should be impartial towards
the various values the parameter can take on. Without some such restriction
minimization of the risk will not lead to acceptable results since the procedure
that without regard to the data takes the constant decision d:6 ¢ ©; clearly
minimizes the risk for 9 £ Q; . As was shown in [9], condition (6.3) reduces to the
usual condition of unbiasedness in the case of hypothesis testing and point es-
timation for suitable loss functions.

If & and 8” are unbiased, it follows from addition of the associated inequalities
(6.3) that the same is true for the product procedure § = (&', §”). More generally
consider products of a family of decision problems with decision spaces D, and
loss functions W, , v ¢ T, where the risk function of a product procedure & with
components 48, is given by

Ro®) = [ Ri) dutx).

Then again the unbiasedness of each §, implies that of é.
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The converse, that unbiasedness of a product of two procedures implies that of
the components, is not true in general. However, it does hold for example if
6 =(&9), W(,d) = U d), W'(,d”) = V(g,d”), and if the parameter
space Q is such that given any points ¢ and ¢ in the projection of @ onto the
¢-axis, there exist two points in Q@ with abscissae £ and ¢ respectively and with
common ordinate 5, and if the corresponding condition holds with ¢ and % inter-
changed. For putting 6’ = (¢, ) an. 6 = (¢, 5), we have

E U, 8(X)) + EeaV(a, 8"(X)) 2 B, U, 8"(X)) + E,V(n, 8"(X)),
and hence
B, UE¢, (X)) 2 E,U(g 8(X)).

Therefore 8’ is unbiased, and analogously also §”. The above condition on € is
satisfied in particular when @ is a direct product, but also for example in a tri-
nomial (or more generally multinomial) situation with ¢ = p;, n = p, and Q the
triangle defined by 0 < p1, poand p1 + p2 = 1.

If this condition holds, and if & , 8 are unbiased procedures with uniformly
minimum risk for the component problems and (5 , & ) is compatible, it follows
from (iii) that (8 , & ) is unbiased with uniformly minimum risk for the product
problem. In the next section we shall give a much weaker condition on the struc-
ture of the decision problem, for which a similar conclusion holds.

7. Unbiasedness. We now return to the multiple decision problems of Sec-
tion 2, which were obtained as restricted products of the problems of testing
H,:0 ¢ wy, v € T. The losses resulting from false rejection and acceptance are
assumed to be a, and b, respectively, so that the risk for the testing problem is

a,Eyp,(X) for 6¢w,

7.1 R, (0) =
(7.1 @) b,Egll — ¢,(X)] for 6wy,

which may be written in a single formula as

(7.2) Ry, (0) = 3(xy + 1)a,Bo 04(X) — }(z, — Db,Eee3'(X) for Oewy.
The risk of the prodi =t procedure is therefore

(7.3) Ry(8) = Eo 2oy @iy + Dayes(X) — 3(zi7 — by (X)),

when 0 £ Q; = N5 and the z’s are defined as in (2.1).

The purpose of the present and following sections is to prove that all of the
procedures descrived in Sections 3 to 5 are unbiased, and among all unbiased
procedures possess uniformly minimum risk, when the loss function is given by
(2.4). The result is independent of the weight function u, provided in the case
with infinite T, u is equivalent to Lebesgue measure in the sense of mutual abso-
lute continuity. It is however valid only within the class of procedures the risk
of which is finite for the chosen u.

5. The methods used herein (especially the geometric type argument of

—— CORRECTION

Page 14, formula (4.12) through page 17, line 23 should be exchanged with page 70, line 8
through page 72, next-to-last line.
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Theorem .3 and Lemma 4.3) may also be usefully applied to obtain structure
theorems in other sequential decision problems under suitable regularity con-
ditions. For example, the stopping rule for any Bayes solution (risk = expected
loss + En) for the k-decision problem of choosing which of 6; < 6, < -+ < 6
is the true parameter value when the X; have the density f(z, 6;) of (3) of
Lemma 4.2 for some j is easily seen for large »n to approach that which says to
stop if and only if each of & — 1 certain SPRT’s of 6, against 6;.1 (1 = j < k)
says to stop.

6. For practical use, our results may be put into more convenient form.
For example, if f; is for some A > 0 the normal density with mean Aj and unit
variance, our results say that there are constants A; > A, > -+ > Ay > 1
such that the (essentially unique) procedure with type I and type II errors a
which minimizes Ao(8) stops the first time |7 Xi| = A. (making the ap-
propriate decision) and never takes more than N observations (assuming a first
observation is taken with probability one). Similar characterizations in the
space of the range of the sufficient statistic may be made in other cases of Lemma
4.2.

7. For given of , it is interesting to consider Ao(*) where &* is the SPRT with
(%) = af (which minimizes Emn for j = =1). Let M = M(ak,, of) be the
smallest integer such that (4.1) may be satisfied by a fixed-sample-size procedure
8 requiring M observations. It is easy to give examples where 4,(6*) < M (e.g.,
let fo be close to f_; or fi) and where M < Ao(6*) (in the example of Remark 6
above, as a — 0, A4(8*) is of order (log a)’ > M(a, @)). It would be interesting
to obtain useful inequalities and limiting formulas for e(a—1, ai), as well as
e(a_y, a1) / Ao(6*) and e(a_y , a1) / M (a1, a1), analogous to those which can be
obtained in sequential analysis [6]. Of course, if for each £ one has a knowledge
of an upper bound on N, one can compute the procedures of Theorem 4 (for all
of) by “working backwards” as in [3], [4]. Without investigating these topics
further, we mention an interesting suggestion of Wolfowitz (who is also to be
thanked for suggesting the problem of this section): There is in Case (3) of
Lemma 4.2 with u equivalent to Lebesgue measure a one-parameter family
C of tests of the form “stop the first time there is a violation of the inequality
by + Sn < D¢ X: < hy + Sn (b, he, S constants)” and which satisfy a; =
af (i = =41). One of these other than the unique SPRT &* of f, against f_, which
is a member of C' may minimize 4o(5) among members of C' and may reduce
Ao(8) considerably from its values for 8. Investigation now being undertaken
shows that this improvement may be appreciable in practical examples and
can often be achieved without modifying Em greatly for 7 = +1. We also
remark that truncated SPRT’s will often be much better than untruncated
SPRT'S (e.g., in the example of Remark 6 for o small) in making A,(8) small
subject to (4.1); some data on this are available in (e.g.) [7]. These remarks
apply also to 9 and 10 below.

8. Our results may be extended in an obvious fashion to consideration of
minimizing Ay(8) subject to (4.1) for continuous time processes [8].



71 J.. KIEFER AND LIONEL WEISS

9. One may obtain a result similar to that of our Theorem 4 for the problem
of minimizing subject to (4.1) a (probability) average of Een over a set of 6
between 65 and 6; in the cases of Lemma 4.2 (see also Section 3). This corre-
sponds to the practical situation where  may be thought of as having a known
probability distribution (e.g., certain industrial problems).

10. In any of the cases of Lemma 4.2, one can obtain results on the problem
of minimizing sups_,<e<e,Fen subject to (4.1). This can be done by obvious
application of the Bayes technique, using Remark 9. In some cases it will be
casy to guess at a value 6 (6—; < 6y = 6:) such that a procedure minimizing
A44(8) subject to (4.1) has its maximum Fgn at 0 = 6; . This procedure will then
clearly minimize supy Egn.

11. Results like those of Theorem 4 and Remarks 9 and 10 can also be ob-
tained if a restriction of the type Iin = ¢i(7 = =+1) is imposed in addition to
(1.1).

12. Lemma 4.2 can easily be extended to include many other cases, e.g.,
many cases arising in simple fashion from those of Lemma 4.2. For example,
Lemma 4.2 also holds for f(x, §) = (¢t + 1)z'67"7'if 0 < « < ¢ (and = 0 other-
wise), where ¢t > —1.
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