A MOVING SINGLE SERVER PROBLEM
By B. McMiLLAN AND J. RIORDAN

Bell Telephone Laboratories, Incorp., New  York

1. Introduction. An assembly line moving with uniform speed has items for
service spaced along it. The single server available moves with the line while
serving and against it with infinite velocity while transferring service to the next
item in line. The line has a barrier in which the server may be said to be “ab-
sorbed” in the sense that service is disabled if the server moves into the barrier.
The problem solved here is the following: given that a server with exponentially
distributed service time starts service on the first item when it is 7 time units
away from the barrier, what is the probability p(k, T) that it completes & items
of service before absorption? This is the same as determining the generating

function
W P(z, T) = 3 p(k, I)s".
5]

The referee has pointed out to us an identification of this problem with that of
finding the number of units of service in a busy period for the usual (stationary)
single server. This may be seen as follows.

Take 7(t) as the distance from the barrier at time ¢, so that 7(0) = T'. Take the
spacing between items as an independent random variable with distribution
function B(t). Then the graph of 7(t) as in Fig. 1 consists of lines of unit slope
interrupted by jumps having the distribution B(f) and occurring at t-epochs de-
termined by the exponential distribution of service time. The graph ends when
7(t) = 0 for the first time, when service, is disabled.

Now consider the queueing system with a single server, Poisson arrivals, and
distribution of service times B(t). Take 7(f) as the waiting time of a virtual
arrival at time ¢. Then the graph of 7(¢) for a single busy period of the server is
exactly as in Fig. 1 if the first customer served has a service time which is given
to be T.

Note that one problem is turned into the other by interchanging service and
arrival variables.

Busy periods were first considered by E. Borel [2] for the case of constant
service time and with main interest in the number served, exactly as here, but
with the first customer’s service time the same constant as all others. Turning to
the length of the busy period, D. G. Kendall [4] generalized Borel’s result to
arbitrary service time distribution by transforming it into a question concerning
a branching process. Kendall’s functional equation was carefully derived by L.
Takacs [7], who also obtained a similar equation for the generating function for
the number served in a busy period (with no condition on the first customer) for
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Fi1c. 1. Sample behavior of random variable ()
7(t) = distance from barrier at time ¢ (moving server)
= waiting time of a virtual arrival at time ¢ (queueing system)

arbitrary distribution of service time. All of these are under the usual assumption
of Poisson arrivals.
Takacs’ result (l.c. Theorem 7, p. 120) in present notation is as follows:
TreorEM (Takacs). If the generating function of number served in a busy period
18

(2 ' F(x) =z fo i P(z, T) dB(T),
and if arrivals are Poisson with average o in unit time, then
3) F@ = [ " exp [—at(l — F(x))] dB().
This suggests that the conditional génerating»function P(x, T) satisﬁes,
(4) : P(z, T) = exp{—aT [1 - [ P(z, T) dB(T)]} R

which deserves an independent derivation. It is clear that it is not a 81mple con-
sequence of (3), since in the case of constant service time equal to e
F(z) = zP(z, €)

and cannot pos&bly determine P(z, T) for arbltrary T. Nevertheless Eq. (4) is
correct.

Because of this, we retain our original denvatlon of P(z, T) which is limited to
the two extreme cases (of most interest to us), namely (i) constant spacing

(5) B(t) =0, =
= 1, 1> e
and (ii) random spacing

(6) B@t) =0, ¢

IIA
~
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=1-¢”, t>0,
for both of which we take the service distribution as
Q) A@®) = 0, t=0,

=1—-¢% t>0.
The average service time is 1/a.

We show that (4) is true in both cases and obtain explicit expressions for the
probabilities p(k, T') and for their moments.

2. Uniform spacing. The probability p (0, T), that service on the first item
begun T time units away from the barrier is not completed before absorption,
is the probability that the service time is greater than T'; hence
(8) p(0,T) =1 — A(T) = ¢*".

For the other probabilities p(k, T), k = 1, 2, - - - , a recurrence may be found
as follows. Suppose service on the first item is completed in the interval ¢, ¢ +
dt; then service is begun on the second item at a point ¢ + € time units away from
the barrier, and it follows at once that

p(k, T) = foTp(k — 1t + & dA(T — o),

© )
= [ plk — 1,t + ae " dt.
o

Then, using Eq. (1), the generating function P(x, T') must satisfy

T
(10) P(z, T) =" + xf Pz, t + e)ae‘“(T_” dt.
0
Suppose that this has a solution e ™", X = \(z; a, €); then (10) shows that
(11) e — ¢ = aze (™ — ¢*")/(a — ),
or
(113,) @ — N = axe—)\e.

But this is what (4) becomes when B(¢) is given by (5) and P(z, T) = ¢,
Notice that for x = 0, A = a, as is required by (8). Note also that all proba-
bilities p(k, T), k = 1, 2, - - - are uniquely determined by (8) and (9), and that
P(z, T) is an analytic function for z < 1. To determine it rewrite (11a) in the
form
(ae — Ae)e ™™ = zaee™
or, what is the same thing,

(12) ze " = w, z=qae — \e, W = Taee .
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This is an equation familiar in Lagrange series expansions and in fact the ex-
pansion for exp (2T/e¢) = exp (aT — AT) is given by Pélya and Szego [5] (IIT
Abschnitt, p. 210) in the form

—1

exp (T — AT) =1+ ; (T/e)(Tke' + 07 <
or
(13) exp —AT = &7 + ; T(T + ke*” + ke)k‘ e
Hence
(14) pk, T) = ,T_(Z’_%Zc_fl"f v

a result which may also be obtained from (9) and mathematical induction.
For the probability P(1, T) of absorption, (12) becomes

(15) 26 ° = aee ™.

The function y(z) = ze * of the real variable z is zero for x zero, increases to a
maximum at z = 1 and decreases monotonically to zero; hence the equation
a — x¢° = 0 has two real roots for ¢ < ¢ ' and in the present instance, Eq.
(11), because probabilities are in question, the smaller is the proper one. For
ae < 1, this root is ae itself, otherwise it is denoted by 2z, . Hence

P, T) =1, ae = 1,
= exp [— (a — 2/€)T], ae > 1.

It is interesting to notice that the first of these may be verified as follows.
Rewrite (14) as

k k—1
o, 1) = ey [LERY (LRI

Then, by a result given by Jensen [3], namely

(16)

(14a)

—(a+ka:) (a + kx)k 1 '
Zo: k! T 1-2z’ lz] <1

and (14a), it follows that

1 e
l—a 1 — ae
Jensen’s result may also be used with (14) to show that
(17) M(T) = X kp(k, T) = oT(1 — ae)”, ae < 1.
For higher moments, two courses are open. First, since

(18) P+ z,T) = i M (T)/k! = M(z, T)

P(1,T) = =1, ae < 1.
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with My, (T) the kth factorial moment, it follows from (10) that
T
(19) Mz, T) = e + o(l + 2) f Mz, t + 9T gt.
0

By differentiation

(20) oM, T)/oT = oMz, T+ ¢) — Mz, T) + cM(z, T + €)};
hence, equating powers of z, with a prime denoting a derivative,

(21) M w(T) = aMum(T + €) — aMw(T) + akMe—n(T + o),

a differential recurrence relation which may be solved step by step, and which is
satisfied by Mo (T) = M(T), where M(T) is given by (17). The next case is

M'o(T) = aM (T + €) — aM(T) + 2a°(T + €)(1 — €)™
and it turns out that
Mo(T) = aT(ae)@ — ae)(l — ad™ + M*(T).
Second, from (12) by Lagrangian inversion (cf [5], 1.c. 209)

2u° a1 W
e=wtGrt o F O S+

and
exp Tz/e = exp (T — \T))
22) = exp (2uT + 2eT(zxu)’/2! + -+ + (ne)" 'T(xu)"/n! 4 --+)
= Z(xu)"Yn(yl y Y2, 000, yn)/n!
= exp zuY, symbolically, ae < 1,
with u = ae *, Yu(1, Y2, -+, ¥») 2@ multivariable polynomial introduced by
Bell [1], y» = (ne)"'T; and in the symbolic abbreviation the usual convention:
Y* = Yi(yr, y2, - -+, yx) is followed. (The relation used in the second and third

lines of (18) may be regarded as a definition of the Y polynomials).
Then

M@E, T) = exp [1 4+ z)uY — aT], symbolically,
and again for ae < 1

M(T) = e *™u*D* exp uY, D = d/du,
(23) = ¢ *"u*D* exp aT
= Yi(Tuoy, Tlay, - -+ , Tu'ar), ar = D'a,

the second line following from M (0, T') = 1, the third from the development in
[6].

The derivatives oy are readily calculated; indeed, from the initial values

uay = a(l — ae)™, Waoy = a(ae)2 — ae)(l — ae)™
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and mathematical induction, it is found that

(24) wor = a(l — 0) *q@), V= ae
with .
Gi@) = [l — k + 4k — 2)v — k'lgu(v) + v(1 — 0)g'x(v),

the prime indicating a derivative.
It may be noticed that the variance of the number served is given by

var = Mo (T) + M(T) — MXT)
= aT(l — ae)™

3. Random spacing. As before p(0, T) = ¢ ", and the other probabilities are
obtained by a recurrence derived as follows. Suppose service on the second item
is begun when it is in-the interval (S, S + dS) in time units away from the
barrier; the probability of this event is, with ¢ = a8/(a + B),

T
B dS f PN gt = a(fT — e P dS, S>T,
0
and
T
B dsS P D0e Gt = ae (e — ¢7°) dS, S < T.
-8

Hence, just as with (9)

T
plk, T) = ae_”fo (e — e™)plk — 1, 8) dS
(25) oo
+ a(@® — ¢7) [ ep(k — 1, 8) dSs, k> 0.
T
It may be noticed for verifications that
p(1, T) = aTe_aT’
p@2, T) = &’Te (o + B)™ + T *"/21.
The probability generating function P(z, T'), defined by (1), has the recurrence

T
P, T) = ¢ + axe"“Tf (e*® — ¢P%)P(z, S) dS
0

(26) o
+ az(@ — ) fT ¢*SP(z, S) ds.

Trying an exponential solution
P, T)=¢"", \=\az;a8h)
leads to the conditional (quadratic) equation

@7) (@ = N(B + ) = afz,
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which again agrees with (4) when B(¢) is given by (6) and P(z, T) = exp —AT as
above. The solution of (27) is

2\ =a =B+ [(a+ )’ — 4afz]"

The positive sign must be chosen since it leads to A(0) = a and P(z, T) < 1
for ¢ < 1. Hence

(28) Pz, T) = exp —12" [« — 8+ (& F B = dafal.

It follows at once (taking the positive square root) that
29) PQQ,T) = 1—,( o a £ B,
=g a = B.

The probabilities p(k, T') can be obtained easily from the generating function
by noting that its second derivative may be written as
(30)  [(e + B)* — 4aBz]P"(x, T) = 208P'(z, T) + («BT)*P(z, T).

From this follows the recurrence
(k+ 2)k + V)pk + 2, T)
= (2k + 2)(2k + 1)(a’/aB)p(k + 1, T) + o’T’p(k, T).

For an explicit expression, write
k—1 k—j
_a aT j
P, = e DAy B, b = e
then the numbers A;; are determined by the generating function recurrence

(1 — 2)4u(@) = 1 — 2) 3 Ap2’

1(2k — 2
= A,,_l(x) b E(’Ck— 1):&:’“.

Similarly factorial moments are determined from the following relation for the
derivatives of M(x, T) = Pl + =z, T):

(32) [(a — B — 4aBzlM”"(z, T) = 2e8M'(z, T) + (aBT)’M(z, T),
which leads to the recurrence

(33) Maun(T) = (4k + 2)[aB/ (e — )" 1M sn(T) + [(aBT)*/ (e — BYIM (1)

Hence

@31)

k—1 k—j

()™

Mo (T) = k! Ap; —2
(k)( ) k JE ki (k — ])l

with the numbers A;; as above, and ¢ = a8/(8 — @), d = aB8/(8 — a)°.

di
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The mean and variance of the number served are

_apT o
M(T) " B—a 1-a/p’
_af(B — T _ aT(l — (a/B)?)
[ e e i s uy/

Note the similarity to the corresponding results for uniform spacing.

Thanks are due to E. N. Gilbert for a thoroughgoing review of an earlier draft,
and to the referee for his stimulating identification of two apparently distinct
problems.
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