ESTIMATING FUTURE FROM PAST IN LIFE TESTING
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1. Summary. Let 6, represent the unique 100p per cent point of a continuous
statistical population, while z, is the rth largest value of a sample of size n from
this population (r = 1, ---, n). This paper considers estimation of 6, on the
basis of Z,qy , - -+ , Tremy , Where the 7(3) differ by O(n/n + 1) and do not neces-
sarily have values near (n + 1)p. Also considered is estimation of zz on the
basis of Z,qy , -+ , Zrem , Where the 7(¢) differ by O(n/n + 1) and do not neces-
sarily have values near R. The results are of a nonparametric nature and based
on expected value considerations. These estimation procedures may be useful
for life-testing situations where time to failure is the variable and some of the
items tested have not yet failed when observation is discontinued. Then 6, and
zz can be estimated for p and R values which extend a moderate way into the
region where sample data is not available. Estimation of the zr value which
would be obtained by continuing to observe the experiment represents a predic-
tion of the future from the past. The results of this paper may be of value in the
actuarial, population statistics, operations research, and other fields.

2. Introduction. Let us consider a sampling situation where # items are simul-
taneously life tested to determine their times to failure. Then the time to failure
for the first item which fails is the smallest value for this sample of size n. The
value for the second item to fail is the next to smallest sample value; etc. Thus
life-testing situations have the property that the r smallest order statistics of a
sample are determined in advance of the remaining values of the sample. More-
over, the first r items to fail furnish the r smallest values of the sample of size 7,
even if some or all of the remaining sample values are never determined. Jacobson
called attention to these valuable properties of life-testing situations in [1]. A de-
scriptive outline of the life-testing field is given in [2].

The property that the r smallest order statistics of a lifetesting sample can be
obtained without the necessity of determining the remaining sample values can
be exploited in many ways. The basis for this exploitation is that substantial
time and/or cost can often be saved by stopping a life-testing experiment at
some convenient time before all the items have failed. The situation of this type
considered here is the estimation of 6, on the basis of i, - - - , z» when (n + 1)
p > r—that is, estimation of population percentage points in the region not
" covered by the available data.

The life-testing property that the r smallest order statistics are determined in
advance of the remaining sample values furnishes an opportunity for estimating
the future frcm the past. Suppose that r items have failed up to the present time
and it is desired to predict the future time at which the Rth item of this set will
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fail (R > r). Thatis, z;, - - - , 2, are known and estimation of zr in an expected
value sense is desired. This paper derives such an estimate for the case where r
and R do not differ too much.

The purpose of this paper is to derive nonparametric expected value estimates
which are approximately valid for nearly all continuous statistical populations
of practical interest. These estimates are not. intended to be competitive. with
those which can be obtained on the basis of additional information about the
population sampled. Instead, the nonparametric estimates presented are for use
when more specialized estimation methods are not warranted.

Whether 6, or z is estimated, the arithmetical problem consists in determining
the values of ¢; , - - - , ¢n for a linear function of the form

2 i,

where m, r(1), ---, r(m) are given integers. The procedure for obtaining the
values of the ¢; consists in solving m specified linear equations in m unknowns.
Although the emphasis of the paper is on life-testing situations, the results de-
rived are valid for more general types of situations than those where only 2z, ,
---, z, are available and r < (n 4 1)p, R. For estimation of 6, , knowledge of
the values of order statistics z,qy, * - * , Zr(m Such that r(3) = r(j) + O(+/n + 1)
and none of the r(z) differ too much from (n + 1)p is sufficient. In estimating
Zr, it is sufficient that z,q), ---, . are available with r(2) = r(j) +
0(7/n + 1) and none of the (z) differing too much from R. Thus the results of
this paper can also be used to estimate the past from the present for life-testing
situations where the data for the past was lost or not recorded.

Life-testing situations where population properties are of greater interest than
sample properties usually involve inanimate objects such as automobile tires,
light bulbs, etc. Often a considerable savings in time and/or expense can be
obtained by deliberately stopping a life test of this type when 80 to 90 per cent
rather than all of the items have failed. Through use of the method given in this
paper, many of the upper population percentage points of interest can be esti-
mated even though the upper 10 per cent to 20 per cent of the data is truncated.

The future mortality occurrences among the now-surviving members of a given
set of items can be of interest for some types of life-testing situations. The future
mortality among the survivors of a specified group of persons which have already
been observed for some time represents a situation of this nature. Estimates of
the future mortality among the survivors of such a group of persons can be valu-
able in actuarial science, population statistics, and other fields. This paper pre
sents a rather widely applicable procedure for estimating the first time at which
a specified number of additional individuals will have died on the basis of the
times to death for the individuals which have already died.

An investigation is made of the variances for the derived estimates. Every
estimate considered has an estimate of the form

Pl — p)/nlf(0,)F + O(™"),
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where ¢ is a specified number which differs from the r(%) by O(v/n + 1), p: =
t/(n + 1), and f(z) is the probability density function (pdf) of the statistical
population sampled. Thus all the estimates presented are consistent, having
standard deviations which are O(1/4/n).

If all the sample values were available, the corresponding sample percentage
point might appear to be the most suitable nonparametric expected value esti-
mate for 6, . In many cases, however, an estimate for 6, of the type given in this
paper may have a higher efficiency (i.e., smaller variance) than the corresponding
sample percentage point. The variance for the sample percentage point corre-
sponding to 6, is

p(1 — p)/nlf(6,)F + O(n™?).

If n is large and
pe(l — p,)/f(o,,,)f < p(1 — p)/f(6,)",

the sample percentage point corresponding to 6, usually has a lower efficiency
than an estimate of the type presented here. This inequality is frequently satis-
fied for unimodal populations where 6,, is more toward the central part of the
probability distribution than 6, .

In deriving the results, f(x) is assumed to exist, be positive, and of an analytical
nature for all z of interest. Such strong restrictions on f(x) are not necessary for
the validity of the results presented. However, little generality is gained for
practical cases by using weaker restrictions on f(x). There are limitations on the
accuracy to which measurements on continuous observations can be made for all
applied situations. This data-accuracy limitation indicates that the conditions
imposed on f(z) should be acceptable for virtually all practical situations of a
continuous type where 6, is unique for all p.

Section 3 contains a statement of the estimates for 6, and z along with some
restrictions on their use. A: numerical example of the application of each type of
estimate is given in Section 4. Assuming a standard normal population, the ap-
proximate properties stated for these estimates are compared with their exact
properties. Section 5 contains the derivations and motivation for the material
given in Section 3.

3. Statement of estimates. Let us consider an explicit statement of the method
for obtaining estimates of 6, and z . The additional notation used is

1 < .
t = - ; r(3),
r = max r(z),
o 1gigm
d(i) = t — r(s) = quantity which is 0(v/n + 1), t=1,-:--,m);

d@) # dk)ifi # k
pl:t/(n'*'l)r q1=1_p3}
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pr = R/(n + 1), gr = 1 — p&,
A; =B - 2V /G - 1Y,

_ B(pe — Pt)]j—l pear(j — 1) (G — 2) _ -2
B; = G= D! + 2 £ 2)(G — DI B(pe — I,
(=9 G — D) (=) dw)
(G — ! (n+1)G - D!

G-1G=2)(=9)"" . .

(G =G —2)G —3) (=8 d) "
T T 2 F DR+ 2) (G = D! [(n + 1) peg. + % ),

CG, v) = Cid@), 3(p — po)],
C'(G, 7) = Cid@), 3(p= — pJ)),

wherej =1, --- , m. ,
For specified n, m, r(1), - - -, r(m), p, R, the estimates considered and their
principal expected value properties are given by

B[ asto| = 0+ 067 + 01366 ~ 9017,

B[ £ bt | = Blas) + 067 + 011 3(on = 217,

If m = 4, 0(n""*) is replaced by O(n™?) in these expressions. The sets of linear
equations used to determine the values of the a; and the b; are

Zla,-c(j,z‘)=A,~, _Zlb,-c'(j,i)——-Bj, J=1 -, m.

The values for the a; and the b; can be conveniently expressed in the form of
determinants. This form is especially useful for small values of m. Explicitly,

- determinant of the C(u, v), with C(j, 7) replaced by A;forj =1,---,m

: ‘ determinant of the C(u, v) ’
b = determinant of the C’(u,v) with C’(j,1) replaced by B;forj =1,---,m
t determinant of the C’(u, v) ’

- If the determinant of the C(u, v) is zero or near zero, a change in the values for
the r(Z) may be required to assure that none of the a; are of too large a magnitude.
Usually a change of one value is enough to eliminate this difficulty. The same
will be true if the determinant of the C’(u, v) is zero or near zero.

Let us consider determination of a value for m which seems large enough to
assure that the unstated higher order expected value terms can be neglected.

Accuracy to terms of order ™" implies that m = 3. The value used is also re-
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quired to satisfy the condition

log [max (™%, 107%)
log | 3(» — pJ) |

log [max (n~*?, 107™)]
log | 3(pz — o) |

This second condition for determining m is based on the requirement that

, if 6, estimated,

v

m
if z estimated.

b

max(r=", 107) = {l ip — ) |™ if 6, estimated,
| (v — po) |7, if xx estimated.
These two conditions assure that the expected value error of an estimate is
O[max (n~*?%,10™*)]. The minimum value of m = 3 is acceptable for many of the
cases encountered. From a computational viewpoint, the method probably
should not be used if the value of m obtained by this procedure exceeds 10.
The convergence rates of the expansions used in obtaining estimates for 6,
depend on 3(p — p:), the d(¢)/(n + 1), and the properties of the underlying
statistical population. In practice, the underlying population properties are usu-
ally such that convergence is more rapid for p, and p near the center of the dis-
tribution. On this basis, both |d(z) |/(n + 1)p.g: and %[ p — p.|/[min(pg,
P:q:)] should not be too large. The maximum allowable value for these quan-
tities is taken to be £ for the type of situations considered. This value is not
overly small but should be satisfactory for a large majority of the practical
applications. Hence, the method given in this paper for estimating 6, should
not be used if either

max |d(7) | > 3peqin + 1),
15ism

or
P — pe| > % min (pg, pege).
On a similar basis, the method for estimating xz should 'not be used if either

max [d(2) | > 3peqe(n + 1),

1gism
or
| e — Pe| > % min (Prgr , Pgs).

Sometimes the inequality involving the d() can be changed from unacceptable
to acceptable by using a different value for m which allows a decrease in max
| d(@) |.

When 2;, - -+, - are given and r > (n + 1)p, R, a recommended selection
for the values of the 7(¢) in both types of estimates is

'r(z')=r—(m—i)K, (Z-=1y"'rm)y
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where
K = max [1, largest integer contained in:—n Vn + 1.

The resulting 7(z) differ by O(+/% + 1), are equally spaced, and have desirable
properties with respect to the expansions used in deriving the estimates.

Every estimate of the two types considered has approximately the same
variance. For all estimates derived, the variances are of the form

Pege/nlf (051" + O(n™™").

Thus, each estimate has a standard deviation which is O(n™"*). The order of
the standard deviation for an estimate is the reason for neglecting all terms in-
volving n to orders n~** and higher in the expected value expressions for these

estimates.

4. Numerical Example. To illustrate use of the methods of this paper, let us
consider the case where n = 20, 21, - - -, 215 are given, p = 0.84, and R = 17.
The value of m is determined first. This value is the smallest integer which is
at least 3 and such that

—3/2 —4
log [ma)f (n",107)] = 1.84, if 6, estimated,
log | 3(p — po) |

~3/2 —4
log [mai( (™", 107)] 171, if 2 estimated.
log | (P — P2 |

Thus m = 3 for both types of estimates.
Next let us evaluate r(1), 7(2), and r(3). The value of K is given by

K = max [1, largest integer contained in-la Vvn+ 1] = 1.

Hence, for both types of estimates

r(l) = 13, r(2) = 14, r(3) = 15,
since r(z) = r — (m — ¢)K. Thus¢ = 14 and

dl)=1, d@2)=0, d@B3) = —1.
Also the relations

max Id(z)l = %pz(]:(n + l),

1Sism
| P — Dt I = % min (Pq, ptqt)7
| pr — P | < 4 min (prgr, Pq:)

are easily verified so that the methods of the paper are applicable for the case
considered.
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By direct substitution, the values of the 4; and B; are found to be
A; = 1.0000, A4, = 0.0867, A; = 0.0038,
B, = 1.0000, B, = 0.0715,  B; = 0.0028.
Thus -
C(1,1) = 1.0000, C(1,2) = 1.0000, C(1,3)= 1.0000,
C(2, 1) = —0.0390 C(2,2) = —0.0867 C(2,3) = —0.1344,
C3,1) = 0.0054 C(3,2) = 0.0088 C(3,3) = 0.0144,
and
¢’'(1,1) = 1.0000, C'(1,2) = 1.000, ¢'(1,3) = 1.0000,
C'(2,1) = —0.0238 C'(2,2) = —0.0715 C'(2,3) = —0.1192,
¢’'(3,1) = 0.0049 C’'(3,2) = 0.0076 C’'3,3) = 0.0125.
Consequently,
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
a; = [0.0867 —0.0867 —0.0390’ / —0.1344 —0.0867 —0.0390
0.0038  0.0088  0.0054 0.0144  0.0088  0.0054

= 3.38.
Similarly, a; = —9.41 and a3 = 7.03. Also
1.0000  1.0000  1.0000 1.0000  1.0000  1.0000
b = |0.0715 —0.0715 —0.0238 -0.1192 —0.0715 —0.0238
0.0028  0.0076  0.0049 0.0125  0.0076  0.0049
= 1.49.

In a like fashion, b, = —4.99 and b; = 4.50.

Using the values determined for the a; and b;, approximate expected value
estimates are obtained for fp.ss and zy; . These estimates and their properties
are given by

E(3.38 213 — 9.41 &y + 7.03 z15) = o + O(n™") + O[|2(p —. p)|™

B0 + 0(0.011) + 0(0.00065),

E(1.49 213 — 4.99 zi + 4.50 215) = E(z1) + O™ + O[] 2(pz — po)|™
= E(zi) + 0(0.011) + 0(0.00036).

" Here the contribution of order n~** seems to be much more important that the
contribution of order | $(p — p)|™ or the contribution of order | 3(pr — p:)|™
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To check the expected value accuracy of these estimates, let us consider the
special case of a normal distribution with zero mean and unit variance. Using
a table of the standardized normal distribution and the results of [3],

E(338 213 — 9.41 214 + 7.03 xla) = 0995, 0038 = 0996,
E(1.49 213 — 4.99 23 + 4.50 255) = 0.888,  E(ry) = 0.921

Thus the expected values of these two estimates are in rather close agreement
with the true values for the case of normality. This expected value agreement
is much closer than is required on the basis of the standard deviations of these
estimates. For the standardized normal case,

S.d. of (3.38 T3 — 941 T4 + 7.03 xlﬁ) = 1.03
s.d. of (1.49 13 — 4.99 214 + 4.50 z35) = 0.72.

Due to the moderately small value of n, these standard deviation values do not
agree very closely with the asymptotic value of

V D: q:/\/ﬁf(ap,) = 0.33.

The moderately small value of n = 20 was selected for the example in order
that the results of [3] could be used.

5. Derivations. Here verification is presented for the expected value and vari-
ance results stated in Section 3. This verification is based on the material pre-
sented by David and Johnson in [4].

Let s be a number such that 1 < s < n while f(z) has derivatives of all orders
at all points where it is defined and is non-zero at all points considered. Some
additional notation is used
a'x
dFv | x.x,’

=1,2 ---.Here X® = X, while Xty = 05, whether (n + 1)p is an’
mteger or not. On the basis of [4],

E [xr(i)]

F(X) = [zf(x) dv, F(X.) =p, X® =

Pr) @rs (z) Prd @r(n 3)
r(3 7 1 oN X r(4 (3 r(s
()+2( 9 +( +2)2[%(q0 Pro) X: (o

+ 3pro v X05]
to terms of order n~*, where Pry = r(8)/(n + 1), and g,i) = 1 — Py . Also
Ble) = Xa + 2P0 X0 4 00,

on the basis of [4].
The first step of the procedure used for developing the estimate of 0, consists
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in expanding the E[x,;)] and 6, about a probability value which is halfway
between p, and p. The value p, is considered because of the relation

Elz,5) = 8y + 01/V/n), f=1,---,m).

Taylor series expansion about the midway probability value of 3(p + p.) yields
desirable convergence properties for both the E[z,;)] and 6, . In particular, these
expansions have about the same rate of convergence. Similarly, the first step
in developing the estimate for z consists in expanding the Elz,;] and E(zz)
about the midway probability value of 3(pz + p:). Here the probability pg is
considered because of the relation E(zz) = Or/msny + O(n ™).
Next let us consider the expansion of Elz.] about the general probability
value of 3(Q + p.). By use of Taylor series,
X(u) _ i (_1)” [%(n + 1) (Q - pt) + d(z)]u X(u+v)

i) — 1 t
(1) = n+ 1 (n+1)Q+21>

(w=20,1,---), since

deiu) X£u+v)
&+ DY =12

Substitution of these relations into the expression given for E[z,;] shows that
E [xr(i)]

M

7

> Cild(), 3(@Q — p)] Xiiinera + O™

+ 3 0@ — pa I,

j=m—
Here the O(n™*) and/or the O[] 2(Q — p,)|™] terms are the most important of
those which are not explicitly stated.
Now the expansions for 8, and E(zz) are considered. The Taylor series ex-
pansion of 6, about the probability value of 3(p + p.) is

00

1 u u
0p = Z{[' Bp — P Xs{tatn)phe-

u=0

To obtain the expansion of E(zz) to O(n™?%), the Taylor series expansion of the
£ about the probability value of 3(pr + p:) is needed. This is given by

u - 1 v w
Xgi ) = vz_:ov_' [%(pk - Ih)] X;(;—Zi)y (u = 0; 1’ e )‘
" Substitution of these relations into the expression given for E(xy) shows that

Blar) = 5| Bee =2y pronnle D)y, — =) X

plus terms of order n~°.
To determine the equations which are used to evaluate a;, -+, am, first
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set @ equal to p. Then the coefficient of X3{(s11p+q in the expansion for

E(X arm)

is required to be the same as the coefficient of this quantity in the expansion
of 0,, (u=20,1,---,m — 1), to terms of the prescribed order. Examination
of the expansions for E[z.;] and 6, shows that the m linear equations in m un-
knowns given in Section 3 for evaluating the a; satisfy this requirement when
m = 3. If m = 4, the terms of order n** are also cancelled out.

To determine the equations used to evaluate by, - - - , b, , set @ equal to pr .
Then the coefficient of Xj{2,, in the expansion for E(X b)) is required to
be the same as the coefficient of this quantity in the expansion for E(xz), (u =
0,1,:--,m — 1), to terms of the prescribed order. Examination of the ex-
pansions for Elz,;] and E(zz) shows that the equations given in Section 3 for
evaluating the b; satisfy this requirement when m = 3. If m = 4, the terms of
order n~** also cancel out.

Finally let us consider the variance expressions for the type of estimates
considered. Let the d(7) be numbered so that d(1) > d(2) > --- > d(m). Then,
using the variance results presented in [4] and the general notation c; to repre-
sent either the a; or the b, ,

=2

var [Z Ct'xr(i):l
(p: — ¢1) d@][ @ _ _d@) <2>:]2
et [p: q: + a1 X n'—r_ 14

=1
Cicj ped@) — ¢ d(j)][ w _ d@) <2)]
+21>z];=1 [p;q:-i——————————n_'_l X, +1X

[P—‘Qﬂfﬂ+orﬂ

This follows from the fact that all of the a,, b;, and d(z)/v/n + 1 are O(1)
with respect to n. Using the condition ) 1c; = 1, which holds in all cases for
the estimates derived, it is easily verified that

var I:g c;xr(i):l = ]I‘)(tii) + 0(n~™);

here the relation X{” = 1/f(6,,) is used.
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