VARIANCES OF VARIANCE COMPONENTS: III. THIRD
MOMENTS IN A BALANCED SINGLE
CLASSIFICATION!

By Joun W. Tukey

Princeton University

1. Summary. The methods used in earlier papers of this series [2], [3] are
extended from variances to third moments, and applied to the third moment
about the mean (= third cumulant) of the usual estimate of the between vari-
ance component in a balanced single classification. The result is moderately
complex, but manageable.

2. Introduction. The technique of this paper grows directly out of those used
for variances in the earlier papers in this series [2], [3]. We assume familiarity
with the terminology and notations used there.

We begin by discussing the third moment of the variance of a sample as an
illustration of problems and technique, and then pass on directly to the main
problem. We need the multiplication formulas (see Wishart [4])

B = kst S o,
n n—1
3(n + 3) 6n + 2 4(n — 2)
k3 = koo + atn = 1) kas + CR=\E koo + 76 -+ 2l = 1) kss.

’ ’ N+ 3 ’ 6N + 2 (N —_ 2) ’
(k2)® = Koo + 3 N(T——_l—) kes + o—— =L Fegos + ke + 4 =0 ks,
Kikis = b + 2 ki o+ 1o s — N(Nz_ 5 b,
keks = ki + v ko + k24 + kaa

3. The variance. We can now proceed to write down the third moment about
the mean (that is the third cumulant) of the variance of a sample drawn from
a finite population. There are various ways to do this, but we shall begin with
one resembling the first method we used [1] to get the variance of the variances
(we refer to using primes for population quantities for three sections):

ave {ky — ks}® = ave {k — 3kiks + 3ka(ks)® — (K2)*}
= ave {k3} — 3k; ave {k3} + 2(k2)®
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6n + 2
m = 1) Foaz

4(n — 2)
+ 7—};’6« + wln = 1) kss}

3(n + 3)

(n )k24+

= ave {km +

— 3K} ave {kn kot 2 lm} + 27

3(n + 3) 6n + 2 4(n — 2)
= kopp + —— 1 2 i —1) ko + ——— =1 kazs + ko + —(-——1)2 k33
— ks — O kik{ — O kiR + 2(k3)°
3 3 6n + 2 4(n —2) .,
= kag + ((n+ ;k24+(n+1)2k222+ Lo"l‘-%—_—lz))éksa
— Bk — %k& - Z—V—_—lkézz + N—(Ni——l) kas — gk;.i
3 ., 24 , 18 p 6
A o = 1)n’°2‘_ o = 1)nk3“_n— g bem
__ 12 o,
mn— DN ™
24 , 12 , ,
- (n _ 1)(N — 1) k222 + (n — I)N(N — 1) k33 + 2k222
N+3 6N + 2 8N —2) .,
+6m—_—1)'k24+2(N 1)2k222+ ks'l—mkaa.

This may be written as
{n—l_ R T e S} 1)} e
- {n n = 0 (n— 1)11\72(1\7 -7 T N(NS_ 1)2} Jezs
+{(n = 0t (- 1)2?N T w o 1)2} Jezae
+{n(nl?- R —121)N W 341)1@ + N(N24- 1)} ks

which vanishes for n = N, just as it should.

Now it is even clearer for the third cumulant (which might perhaps be called
the skewmulant) than it was for the variance, that direct calculation would be
long, tedious, boring, and, because of its length, likely to be erroneous for any
component in an analysis of variance situation. We must go to more ingenious
methods.
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4. Structure. We notice that the third cumulant of any algebraic function of
a random sample takes the form

ave {u'} — 3 ave {u} ave {v’} + 2(ave {u})’
= a(n) — 358(n)y(n) + 28",

where a(n), B(n), and v(n) depend on n alone, and § is independent of n and
N, all four being expressable linearly in polykays. The only appearance of N
comes from the multiplication formulas involved in

B(n)-y(n)
and
8-5-6.
The final result has the form
A(n) + 22 B(m)C(N) + D(N),
where the functions of N come from
—3 ave {u} ave {u’} + 2{ave {u}}®,

which we may suppose already known.
We can again proceed by finding these two terms first, and then using special
populations to determine the coefficients in A (n).

5. The variance-second method. We have
ave {k.} = ks,
ave {k3} = (ave {k})* + var {k,}

e 1 2 2 ’
—(k2)+<’7& —A—,)k4+<n_l N_1>k22

1 ’
={1 +~———}k;2+1k4,
n — n

1

then ), B(n)C(N) + D(N) must come from
6

ki % kiks + 2(kD)° — 3kioks
whence

6 2 ’
E B(n)C(N) = - n—_—{ k24 + km - m kas}

_3 { Ko+ o B ey kss} ,
n

_ N+3 6N + 2 N —
D(N) = 2{3N(N_—-1—)k“ + =1 K2z + ke + 4mkazj

{ Kz + km - ]—VTN2——_1_)- kgs} ,
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thus, the part of the third cumulant of the usual estimate of k; which depends
on the population size, N, is

2 3\,
{ﬁ - Tv} &
14 18 8 12 ,
+{N(N —D) AN FD NN D m— DNV - 1)} s
{ 24 12 24 .
NN =1 Nm-=1 nN-=-1nf™
16 24 /
+{av T m DW= 1>} foz
When n = N this reduces to the negative of
S 4 4 , 12 8 /
S L B T ome By oy ey o s el o L

and since the k, estimate is constant when n = N the additional terms not
involving N must be those just given in (*).

6. The between component in a balanced single classification. We now come
back to the balanced single classification and drop the primes. Hence the column
contribution is drawn from n ki, kyu , - - - , and the error contribution is drawn
from N, K, K1, -+ . We are going to find the third cumulant of the between
component in sampling from an arbitrary finite population.

When we express this third cumulant multilinearly in the &’s and K’s, there
may be terms involving

(1) ks, ko , sz, Kooza

(2) kK2, knaKa , kK5 , KoKy, k2K

(3) K67K247K337Km)
and no others (because of homogeneity and invariance under translation). The
discussion just given for the variance of a sample applies with minor changes
to the case where the errors are constant. This determines the coefficient of the
terms involving the monomials in (1) to be the same as for the third cumulant
of the variance, with ¢ replacing =.

We go next to the terms involving the monomials in (3). Suppose first that
the column contributions are constant. If we take a minimal unit.population
for the individual contributions, the between component is constant. Thus,
the desired third cumulant, and everything it could involve except K¢ , vanishes.
Thus the coefficient of Kj is itself zero.

" In order to deal with the next coefficients, we can use a population with two
non-zero values for the individual contributions. But if both values are alike,
we cannot distinguish between the coefficients of Kz and Ku . So we use a
population of r¢ values 1, ¢, 0, - - - , 0, for which

2t £+t

K = re(re — 1)’ Ku = re(re — 1) °
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There are two cases to consider

CasE 1. (Probability (r — 1)/(r¢ — 1).) One x = 1 and another z = ¢ in
the same column; others, zero.

CasE 2. (Probability r(¢c — 1)/(r¢ — 1).) One z = 1 and another x = ¢ in
different columns; others, zero.

The corresponding analyses of variance are

Case 1
il S8 MS CMS
2(p —
Between c—1 G+ D=1 (t + 1) 2
re re re(r — 1)
2 2 2 E
Within c(r — 1) 41— ¢+1 41 _ 2t 241 L 2
r rc TC(T - 1) re TC(T — 1)
Case 2
or 58 MS CMS -
- 2 . 2 _
Between c—1 c—=D@Ee+1) 2/e2+1 2 2t
re re) re re(c — 1) ric(c — 1)
. _ . . -
Within e(r — 1) -DE+1 41 241
T re re

Thus the mean of the between component vanishes, as it should, and the
third cumulant reduces to the third moment about zero, which is

r—1{2 t1}3+r(c—1){ 2 ¢t \°

rc — 1\rer — re— 1 —Er(c—l)f

___ 8 11
Rorec— 1) \r — 1) 2(c — D
This has £ as a factor, and does not involve £ + ¢, hence the coefficient of
K, is zero, while that of Kj; is

41 1
re|(r— 1) 2> — 12’
which, as we might have suspected, is small when the two sets of degrees of

" freedom are of nearly the same size.
We can deal with the coefficient of K, , and certain of the other terms, by
resorting to normal theory. In this case, the two mean squares become inde-

pendent and their third cumulants are
8(K. + rk2)’/(c = 1)2,  8K3/c*(r — 1),

so that the third cumulant of the between component is
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8{(K2+rk2)“_ K3 }_8( 1 1 >K
2l =12 &r -1 #B\c—1: &r—1/"7?

3r 2 37'2 3 3
+(c_—1)§K2k2+(—c—‘TK2k2+( 1)2’9}
8/ 1 1 24
(= ) K+ e Kk
+7(32‘—)K2’“”+( 8 )km}

Thus, we have determined the coefficients of Ks , K2oks , and Koks , and have
confirmed the part of the coefficient of ks, which is independent of N.

There remain the coefficients of k4K, , k:K3, and kK4 . These we shall seek
by taking a minimal unit population for the column contributions and a mini-
mal population with one nonzero value equal to ¢ for the error. We have

= 1/c, ks = 1/c, ky = 1/c,
K, = t'/rc, K. = £/rc, K, = £/re,
s0 that
£ £ ¢
IC4K2—-‘C—2, k3K';—~—c2" ]O2K4=;z2.
We have the usual two cases to deal with.

Cask 3. (Probability 1/¢). One x = ¢ + 1, others in column = 1, others
Z€ero.

Cask 4. (Probability (¢ — 1)/¢). One column of z’s = 1, one other z = ¢,
all others zero.

Corresponding analyses of variance are

Case 3
DF S i —
t 200 — 1 . . | o
Between c—1 tni=-1 &+ 1, 2
re re e T re
-1 o \
Within c(r — 1) t’r © e
’ re rc
Cask 4
> 5 MS CMS
Nec—-1 2t | 24 2 2 1 o1
-1 L 2 B 1w
Betweer ’ (r + T) c c re clc—1) ¢ rele — 1)
— 1 t: .
Within er — 1) n(’ ) @ o
r re "
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The mean between component is 1/¢c, as it should be, and its third moment
about the mean is

%(12'_93 + : —; 1 <-rc(c2i 1))3 - g%{l - ®+1)2} )

The terms in # and ' are conspicuous in their absence, and hence the coefficients
of k4K, and k;K, vanish. The coefficient of %;K; is

4 1
rell ~ et

We can now reassemble all our coefficients and write down the third cumulant
of the between component in a balanced single classification with ¢ categories
and r units per category. The result is

1 3 2 4 18 14
{52 - cn+;z_}k° +{c(c -1 (c— 1)n+n(n - 1)}k33
12 8
{c<c S ER (R Y o R o 1>2} f

12 24 24 -
+{c(c—1) c—l)n_cn—1)+ (n—l)},c24

24 16
+{ G- De=D T - >}

4 1 24
+ —(——ﬁ kK2 + c2{1 — 1)2} ks K3 + 3 =1 ke Ko

4 1 1 8 1 1
+P?ﬂw—W_ﬂ@—1$K5+ﬁﬁw-m—&@—ngm’
for populations of 7 column contributions and N error contributions.
For infinite populations this reduces slightly, and becomes

ks + 4:((2 )2 33 + P ke + = 1)2 koo + e 2_4 I ka2 Ko
+ i{l — ——} ks Ky + ———= 24 ko Ko
ST c— 12 (e — 1)
4 1 1 1 1
+ sl ey Kt {<c N
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