- [2] W. J. DIXON AND A. M. MOOD, "A method for obtaining and analyzing sensitivity data," J. Amer. Stat. Assn., Vol. 43 (1948), pp. 109-126.
- [3] W. Feller, Probability Theory and Its Applications, John Wiley & Sons, Inc., New York, 1950.
- [4] F. G. Foster, "Markoff chains with an enumerable number of states and a class of cascade processes," *Proc. Cambridge Philos. Soc.*, Vol. 47 (1951), pp. 77-85.
- [5] T. E. Harris, "First passage and recurrence distributions," Trans. Amer. Math. Soc., Vol. 73, No. 3 (1952), pp. 471-486.
- [6] H. Robbins and S. Monro, "A stochastic approximation method," Ann. Math. Stat., Vol. 22 (1951), pp. 400-407.

APPROXIMATE MOMENTS FOR THE SERIAL CORRELATION COEFFICIENT

By John S. White¹

Ball Brothers Co.

1. Introduction and summary. The first order Gaussian auto-regressive process (x_t) may be defined by the stochastic difference equation

$$(1) x_t = \rho x_{t-1} + u_t,$$

where the u's are NID(0, 1) and ρ is an unknown parameter. The choice of a statistic as an estimator for ρ depends on the initial conditions imposed on the difference equation (1). The so-called "circular" model is obtained by considering a sample of size N and then assuming that $x_{N+1} = x_1$. An appropriate estimator for ρ in this case is the circular serial correlation coefficient

Leipnik [1] has derived an approximate density function

(3)
$$f(t) = \frac{\Gamma\left(\frac{N+2}{2}\right)}{\Gamma\left(\frac{N+1}{2}\right)\Gamma\left(\frac{1}{2}\right)} (1 - 2t\rho + \rho^2)^{-N/2} (1 - t^2)^{(N-1)/2}$$

for the estimator r. Leipnik also evaluated the first two moments of this distribution. In this paper a formula is obtained which gives $E(r^k)$ as a polynomial of degree k in ρ .

2. The general formula for $E(r^k)$. To calculate the moments of r we must evaluate the integral

(4)
$$E(r^k) = \int_{-1}^1 t^k f(t) \ dt.$$

Received August 13, 1956; revised February 24, 1957.

¹ Now with Aero Division, Minneapolis Honeywell Regulator Company, Minneapolis.

The direct integration of this function is not obvious; however, it can be evaluated quite easily by means of the Gegenbauer polynomials.

Gegenbauer's function $C_j^n(t)$ for integral values of j is defined to be the coefficient of ρ^j in the expansion of $(1 - 2t\rho + \rho^2)^{-n}$ in powers of ρ (for this and the following results concerning the Gegenbauer functions see Magnus and Oberhettinger [2] pp. 77 and 78).

(5)
$$(1 - 2t\rho + \rho^2)^{-n} = \sum_{i=0}^{\infty} C_i^n(t)\rho^i.$$

The Gegenbauer polynomials are orthogonal over the interval (-1, 1) with weight function $(1 - t^2)^{n-1/2}$ and have the general properties of the classical orthogonal polynomials.

One special result which we shall apply is the following. Let g(t) be a continuous function with j continuous derivatives; then

(6)
$$\int_{-1}^{1} g(t)(1-t^2)^{n-1/2} C_j^n(t) dt = K(n,j) \int_{-1}^{1} (1-t^2)^{j+n-1/2} \frac{d^j g(t)}{dt^j} dt,$$

where

$$K(n,j) = \frac{\Gamma(2n+j)\Gamma(n+\frac{1}{2})}{\Gamma(2n)\Gamma(n+j+\frac{1}{2})\Gamma(j+1)2^{j}}.$$

This result may be verified by applying the "Rodrigues Formula" for $C_j^n(t)$ (see [2], p. 78, line 2) to the left-hand side of (6) and then integrating by parts j times.

Expanding the denominator of (4) in a series (5) we have

(7)
$$E(r^k) = \frac{\Gamma\left(\frac{N+2}{2}\right)}{\Gamma\left(\frac{N+1}{2}\right)\Gamma\left(\frac{1}{2}\right)} \int_{-1}^{1} t^k (1-t^2)^{(N-1)/2} \left[\sum_{j=0}^{\infty} C_j^{N/2}(t)\rho^j\right] dt.$$

Since, for this problem, $|\rho| < 1$ and $|t| \le 1$, (5) may be written as

(8)
$$(1 - 2\rho \cos \theta + \rho^2)^{-n} = (1 - \rho e^{-i\theta})^{-n} (1 - \rho e^{i\theta})^{-n}$$

(8a)
$$= \sum_{j=0}^{\infty} C_j^n (\cos \theta) \rho^j.$$

Expanding the right-hand side of (8) in powers of h as the product of two binomial series and comparing coefficients of h^{j} with those in (8a) we have

$$|C_j^n(\cos\theta)| \le {-2n \choose j}.$$

Hence, by the Weierstrass *M*-test, the series $\sum C_j^n(\cos \theta)\rho^j = \sum C_j^n(t)\rho^j$ converges uniformly in t.

Since the series converges uniformly we may invert the order of integration and summation in (7). Applying (6) to (7) with $g(t) = t^k$ and n = N/2, we have

(10)
$$E(r^{k}) = \sum_{j=0}^{k} K(N/2, j) \frac{\Gamma\left(\frac{N+2}{2}\right)}{\Gamma\left(\frac{N+1}{2}\right)\Gamma\left(\frac{1}{2}\right)} \cdot \int_{-1}^{1} k(k-1)\cdots(k-j+1)t^{k-j}(1-t^{2})^{j+(N-1)/2} dt.$$

We note that

$$\int_{-1}^{1} t^{p} (1 - t^{2})^{q} dt = 0 \qquad \text{for } p \text{ odd,}$$

$$= \frac{\Gamma\left(\frac{p+1}{2}\right) \Gamma(q+1)}{\Gamma\left(\frac{p+1}{2} + q + 1\right)} \quad \text{for } p \text{ even.}$$

If we now let 2i = k - j $(i = 0, 1, \dots, [k/2])$, (10) becomes

(11)
$$E(r^{k}) = \sum_{i=0}^{\lfloor k/2 \rfloor} \frac{\Gamma(N+k-2i)\Gamma(k+1)\Gamma(i+\frac{1}{2})\Gamma(\lfloor N+2 \rfloor/2)\rho^{k-2i}}{\Gamma(N)\Gamma(k-2i+1)\Gamma(2i+1)\Gamma(\frac{1}{2})\Gamma\left(\frac{N+2}{2}+\frac{1}{k}k-i\right)2^{k-2i}}.$$

Applying the multiplication theorem for the gamma function

$$2^{2p}\Gamma(p+\frac{1}{2})\Gamma(p+1) = \Gamma(2p+1)\Gamma(1/2)$$

we find

(12)
$$E(r^{k}) = \sum_{l=0}^{\lfloor k/2 \rfloor} \frac{\Gamma(N+k-2i)\Gamma(k+1)\Gamma(N+2)}{\Gamma(N)\Gamma(k-2i+1)\Gamma(N+2)} \frac{(N+2)}{2} \rho^{k-2i}$$

The above formula may be simplified by considering separately the cases k even and k odd. Setting 2j = k, (10) becomes

(13)
$$E(r^{2j}) = \sum_{i=0}^{j} \frac{\Gamma(N+2j-2i)\Gamma(2j+1)\Gamma\left(\frac{N+2}{2}\right)\rho^{2j-2i}}{\Gamma(N)\Gamma(2j-2i+1)\Gamma\left(\frac{N+2}{2}+2j-i\right)2^{2j}\Gamma(i+1)}.$$

Setting p = j - i and applying the multiplication theorem again, (13) may be written as²

$$(14) \quad E(r^{2j}) = \sum_{p=0}^{j} \frac{\Gamma\left(p + \frac{N}{2}\right) \Gamma\left(p + \frac{N+1}{2}\right) \Gamma(j + \frac{1}{2}) \Gamma(j + 1) \Gamma\frac{(N+2)}{2} \rho^{2p}}{\Gamma\left(\frac{(N)}{2}\right) \Gamma\left(\frac{N+1}{2}\right) \Gamma(p + \frac{1}{2}) \Gamma(p + 1) \Gamma\left(\frac{N+2}{2} + j + p\right)},$$

² For p = 0 the expression in the braces $\{\cdots\}$ in (15) is to be taken as 1.

or

(15)
$$E(r^{2j}) = \sum_{p=0}^{j} \frac{(2j)! \{N(N+1)(N+2) \cdots (N+2p-1)\} \rho^{2p}}{2^{j-p}(2p)! (j-p)! (N+2)(N+4) \cdots (N+2j+2p)}.$$

The corresponding results for k odd, k = 2j + 1, are

$$E(r^{2j+1}) = \sum_{p=0}^{j}$$

(16)
$$\frac{\Gamma\left(p+\frac{N+1}{2}\right)\Gamma\left(p+\frac{N+2}{2}\right)\Gamma\left(j+\frac{3}{2}\right)\Gamma(j+1)\left(\frac{N+2}{2}\right)\rho^{2\,p+1}}{\Gamma\left(\frac{N}{2}\right)\Gamma\left(\frac{N+1}{2}\right)\Gamma(p+1)\Gamma\left(p+\frac{3}{2}\right)\Gamma\left(\frac{N+2}{2}+p+j+1\right)\Gamma(j-p+1)},$$

$$E(r^{2j+1})$$

$$= \sum_{p=0}^{j} \frac{(2j+1)!N(N+1)(N+2)\cdots(N+2p)\rho^{2p+1}}{2^{j-p}(2p+1)!(j-p)!(N+2)(N+4)\cdots(N+2j+2p+2)}.$$

From (15) and (17) we see that

(18)
$$\lim_{N=\infty} E(r^k) = \rho^k, \text{ for all } k.$$

3. Specific moments of r. Direct substitution in (15) and (17) yields the following:

$$E(r) = \frac{N\rho}{N+2} = \mu,$$

$$E(r^2) = \frac{1}{N+2} + \frac{N(N+1)\rho^2}{(N+2)(N+4)},$$

$$(19) \quad E(r^3) = \frac{3N\rho}{(N+2)(N+4)} + \frac{N(N+1)(N+2)\rho^3}{(N+2)(N+4)(N+6)},$$

$$E(r^4) = \frac{3}{(N+2)(N+4)} + \frac{6N(N+1)\rho^2}{(N+2)(N+4)(N+6)} + \frac{N(N+1)(N+2)(N+3)\rho^4}{(N+2)(N+4)(N+6)(N+8)}.$$

The first two moments agree with those obtained by Leipnik, who evaluated them by another method

The central moments of r are

$$E(r-\mu)^{2} = \frac{1}{N+2} - \frac{N(N-2)\rho^{2}}{(N+2)(N+4)(N+2)} = \sigma^{2},$$

$$E(r-\mu)^{3} = \frac{1}{(N+2)^{2}} \left(\frac{-6N\rho}{N+4} + \frac{2N(N-2)(3N-2)\rho^{3}}{(N+2)(N+4)(N+6)} \right) = \mu_{3},$$

$$E(r-\mu)^{4} = \frac{3}{(N+2)(N+4)} \left[1 - \frac{2N(N^{2}-8N-4)\rho^{3}}{(N+2)^{2}(N+6)} + \frac{N(N^{4}-16N^{3}+40N^{2}-32N+16)\theta^{4}}{(N+2)^{3}(N+6)(N+8)} \right] = \mu_{4}.$$

For large values of N the variance, skewness and kurtosis of r are

(21)
$$\sigma^{2} = \frac{1 - \rho^{2}}{N + 2} + O(N^{-2}),$$

$$\sqrt{\beta_{1}} = \mu_{3}/\sigma^{3} = o(N^{-1}),$$

$$\beta_{2} = \mu_{4}/\sigma^{4} = 3 + o(N^{-1}).$$

These last results are to be expected since it is well known that r has an asymptotic normal distribution.

4. Final remarks. The above results should be adequate, as Leipnik has suggested, for serial correlation problems when $N \ge 20$. In particular the expressions for the moments of r will be of assistance in evaluating the moments of functions of r; for example, the variance stabilizing transformation $z = \sin^{-1} r$, which will be treated in a future paper.

REFERENCES

- [1] R. B. Leipnik, "Distribution of the serial correlation coefficient in a circularly correlated universe," *Ann. Math. Stat.*, Vol. 18 (1947), pp. 80-87.
- [2] W. Magnus, and F. Oberhettinger. Formulas and Theorems for the Special Functions of Mathematical Physics, Chelsea Publishing Company, New York, 1949.

ON A DECISION PROCEDURE BASED ON THE TUKEY STATISTIC

By K. V. Ramachandran¹ and C. G. Khatri

University of Baroda

- 1. Summary. In this paper a decision procedure based on the Tukey Studentized range ([5], [6], [8]) has been shown to be an optimum procedure for a particular type of slippage of means of univariate normal populations based on a common but unknown variance. The method given here is similar to that used by Paulson [2] and Truax [7].
- **2.** Introduction. Let $x_{ij}(i = 1, 2, \dots, k; j = 1, 2, \dots, n)$ be the elements of k independent samples of size n from normal populations with means μ_i and variance $\sigma^2(i = 1, 2, \dots, k)$. Let

$$\bar{x}_i = \sum_{j=1}^n (x_{ij}/n), \qquad s^2 = \sum_{i=1}^k \sum_{j=1}^n (x_{ij} - \bar{x}_i)^2 / k(n-1),$$

 $\bar{x}_{\max} = \max(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_k)$ and $\bar{x}_{\min} = \min(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_k)$. Let D_{00} denote the decision that the k means are all equal, and let

$$D_{ij}(i \neq j; i, j = 1, 2, \dots, k)$$

Received June 11, 1956; revised December 10, 1956.

¹ Present address: Department of Statistics, University of Lucknow, India.