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APPROXIMATE MOMENTS FOR THE SERIAL
CORRELATION COEFFICIENT

By JorN S. WHITE!
Ball Brothers Co.

1. Introduction and summary. The first order Gaussian auto-regressive proc-
ess (z;) may be defined by the stochastic difference equation

(1) Ty = pTe—1 + U,

where the u’s are NID(0, 1) and p is an unknown parameter. The choice of a
statistic as an estimator for p depends on the initial conditions imposed on the
difference equation (1). The so-called ‘“‘circular” model is obtained by consider-
ing a sample of size N and then assuming that x4+ = 21 . An appropriate esti-
mator for p in this case is the circular serial correlation coefficient

N
Z Tt Loyl
_t=1

2) r=—s ($N+1 = 1),
PIF
t=1
Leipnik [1] has derived an approximate density function
r (N + 2)
3) fio) = 2 (1 = 2p + pH)M2(1 — fW-

o5 (3)

for the estimator r. Leipnik also evaluated the first two moments of this dis-
tribution. In this paper a formula is obtained which gives E(r*) as a polynomial
of degree k in p.

2. The general formula for E(r*). To calculate the moments of r we must
evaluate the integral

(4) E(*) = [ . &) dt.
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The direct integration of this function is not obvious; however, it can be evalu-
ated quite easily by means of the Gegenbauer polynomials.

Gegenbauer’s function C7 (¢) for integral values of j is defined to be the co-
efficient of p’ in the expansion of (1 — 2tp + p°) " in powers of p (for this and the
following results concerning the Gegenbauer functions see Magnus and Ober-
hettinger [2] pp. 77 and 78).

5) (1 = 2tp + ) = 2 Or

The Gegenbauer polynomials are orthogonal over the interval (—1, 1) with
weight function (1 — t%)** and have the general properties of the classical
orthogonal polynomials.

One special result which we shall apply is the following. Let ¢(f) be a con-
tinuous function with j continuous derivatives; then

(6) j: g1 — &*VCH() dt = K(n,j) j: (1 — g)itn-u2 d_’(gi]_t(]i)_ a,

where

I'2n 4+ 7/)T(n + %)
I'2n)I'(n +j + HT(G + 1277

This result may be verified by applying the “Rodrigues Formula” for C7 (f)
(see [2], p. 78, line 2) to the left-hand side of (6) and then integrating by parts
7 times.

Expanding the denominator of (4) in a series (5) we have

) E<r>—r<N;12>F<%>

Since, for this problem, | p| < 1 and |¢| = 1, (5) may be written as

1 0
_[ . (1 — £ I:;O C’}"”(t)p’] dt.

® (1 —2pcos @+ )" = (1 — pe )1 — pe”)™"
(82) = 351 (cono)s’

Expanding the right-hand side of (8) in powers of A as the product of two bi-
nomial series and comparing coefficients of A’ with those in (8a) we have

© 103 (cos 0) | < (‘J?”).

Hence, by the Weierstrass M-test, the series Y C7(cos 0)p’ = > C7(t)p’ con-
verges uniformly in .
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Since the series converges uniformly we may invert the order of integration

and summation in (7). Applying (6) to (7) with g({) = ¢ and n = N/2, we have

F) = Z y

1
. / k(e — 1)-+-(k — j + D71 — &) gy,
—1

We note that
1
[va —éra= for p odd,
1

(”“)r( +1)

for p even.
( -l- q -+ 1>
Ifwenowlet2 =k —j(¢=0,1, , [£/2]), (10) becomes
&' WV 4k — 2)T(k + DTG + HTIN + 21/2)0"

(11) E@*) = X
= T(N)T(k — 20 + 1)T(2 + 1)TE)T <

N+2

+[k > 210—21'
Applying the multiplication theorem for the gamma function

2""T(p + HI(p + 1) = T'(2p + 1)T(1/2),
we find

. [k/21 T'(N + k — 2)T( + 1)T
(12) E(") = 2 (N+2

(N 4+ 2) j2
) 14

=0 PNk — 2 + DT

+ k- )2’°I‘(i+1).

The above formula may be simplified by considering separately the cases
k even and k odd. Setting 25 = £, (10) becomes

, i (N + 25 — 20)T(25 + 1)r<
(13) EG™) =2 s
= Tr(\N)r(@Qj — % + 1T <

N ;‘ 2) %

+ 25 — )227'1‘(7,' + 1)
Setting p = 7 — ¢ and applying the multiplication theorem again, (13) may be

written as®
¢ F(p + §>r<p N ;r 1>r(y +1IG + 1)r(N +2)

= D F D4 e+ 1r (N+2

(14) E(G™) =

++)

2For p = 0 the expression in the braces { --- } in (15) is to be taken as 1.
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or
wy _ S @OUNN + DNV +2) -+ (V + 2p — 1}p™”
(18) BC™) = 2 oG - IV TN T - T2+ )

The corresponding results for k¥ odd, k = 27 + 1, are
. j
EG*™) = 3

p=0

(16) ( + XD, (-+Ni£)r< )m-+n(A+Q)2”‘
r (-2->1‘<N;' )I‘(p + 1)I‘<p + 5) r (Ziizr—2+ p+i+ 1) G —p+1)
E(r2i+1)
an- (2% + DINWN + DN +2) --- (N + 2p)*"
2@+ DIG - DIV F 2N+ N +2%+2p+2)
From (15) and (17) we see that
(18) Lim E(*) = p*, forall k.

N=c0o

3. Specific moments of r. Direct substitution in (15) and (17) yields the fol-
lowing:

E(r) = ]vﬂ_:——z = My
\ 1 N(N + 1)p°
B =yt wrom+ o
. 3N, NN + D + 2)p°
19 B = row o T WFON F AN + 0
B0 — 3 N 6N(N + 1)p

N+2)N+4  N+2)N+HN +6)

NN + DN + 2)(N + 3)p*
(N +2)(N + HNV + 6)(N + 8)°
The first two moments agree with those obtained by Leipnik, who evaluated
them by another method

The central moments of r are

+

, 1 N(N — 2)p* _ 2
Br—w = wrow o+

.1 —6Np , 2N(N — 2)3N — 2)° \ _
E(r— p) = (N+2)2(N+4+ (N+2)(N+4)(N+6)> I

(20)

B — u)t = 3 [1 _2N(N* — 8N — 4)p°
T W EOW 9 N + 2°(N + 6)
N(N* — 16N’ 4 40N* — 32N + 16)04] _

T T F O T 9
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For large values of N the variance, skewness and kurtosis of r are

21—
N+2

@1 VB = mfe = o,
By = w/a* =3 + o(N7).

These last results are to be expected since it is well known that r has an asymp-
totic normal distribution.

+ O(N™?),

4. Final remarks. The above results should be adequate, as Leipnik has sug-
gested, for serial correlation problems when N = 20. In particular the expres-
sions for the moments of r will be of assistance in evaluating the moments of
functions of r; for example, the variance stabilizing tra.nsforma,tlon z=sin"r,
which will be treated in a future paper.
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ON A DECISION PROCEDURE BASED ON THE TUKEY
STATISTIC

By K. V. RamacHANDRAN! AND C. G. KHATRI

Unaversity of Baroda

1. Summary. In this paper a decision procedure based on the Tukey Stu-
dentized range ([5], [6], [8]) has been shown to be an optimum procedure for a
particular type of slippage of means of univariate normal populations based
on a common but unknown variance. The method given here is similar to that
used by Paulson [2] and Truax [7].

2. Introduction. Let z;;(z = 1,2, --- , k;7 = 1,2, --- , n) be the elements
of k independent samples of size n from normal populations with means u; and
variance o°(z = 1, 2, -+, k). Let

B = 25 (2i/n), § = Z1=1 20 (@ — &) /k(n — 1),
Tmex = max (&1, T2, + -+ , &) and Fmin = min (& , T2, - -+, &). Let Dy denote
the decision that the k& means are all equal, and let
Dii(i ¢.7;7').7 = 1’ 2) yk)
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