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The number of terms required to calculate E'(N, k, p) is m + 1. This is also
the minimum number of subdivisions into which an element must be divided
by a laboratory technician to be at least 99 per cent confident that he will know
the history of the group before exhausting any element. Values of m + 1 cor-
responding to many p’s will be found in Table I.

b. An error expression. Define § to be E(N, k, p) — E’(V, k, p). In other words,
85 = (N/k) 2 iemia {Pr()EL(5)}.

Since Ey(k) = 2k — 1, it follows that 8 < (2k — 1) (N/k) D iems1 Pre(2).

Arbitrarily, m is chosen large enough to make ) io Pri(¢) greater than 0.99.
Therefore, Z',;,,.H Pr,(¢) is less than 0.01. Consequently,

8 < (2k — 1)(N/k)(0.01) = [2 — (1/k)]/100-N.

That is, 8 is less than 2 — (1/k) for each 100 items of the universe. This is a
generous error since it was assumed that every pool containing more than m
defectives contains k defective elements.

6. Conclusions. Using E’'(N, k, p), the optimum & and their corresponding
economies are determined for many prevalence rates in the range 0.001 =
p = 0.38. Values of E’(N, k, p) are calculated for k = 4, 8, 12, - -- and at the
intermediate integral values necessary to insure that the minimum value is
found. Results of this work and comparison with Dorfman’s efficiencies are

found in Table I.
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MAXIMUM LIKELIHOOD ESTIMATES IN A SIMPLE QUEUE

By A. Bruce CLARKE!

University of Michigan
0. Summary. The problem of obtaining maximum likelihood estimates for
the parameters involved in a stationary single-channel, Markovian queuing
process is considered. A method of taking observations is presented which simpli-

fies this problem to that of determining a root of a certain quadratic equation.
A useful and even simpler rational approximation is also studied.

1. Introduction. By a simple queue is meant a queue having a Poisson input and
a negative exponential service time (type M/M/1 in the notation of Kendall
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[1]). That is, the arrival of individuals at the tail of the queue is assumed to be a
Poisson process with parameter A, (\ = the mean number of arrivals per unit
time), while the time required for an individual at the head of the queue to pass
through the service mechanism is assumed to have a negative-exponential
distribution with frequency function of the form ue™’, (1/u = the mean length
of an individual service time), the individual service times being independent of
each other and of the arrival times. An equivalent description of the service
mechanism is that individual departures form a Poisson process with parameter
#, independent of the arrivals, provided the queue is nonempty; when the queue
is empty, no departures can occur.
The quantity

p = Mu

is known as the traffic intensity of the system. It is well known, [2], that, if p < 1,
then the distribution of the number, n(f), of individuals in the queue at time ¢
approaches a limiting distribution as ¢ — «, independent of the initial queue
length. This limiting distribution is geometric with common ratio p. If p = 1,
then no such limiting distribution exists and the mean queue length becomes
infinite. This paper is concerned with the statistical estimation of p, as well as
the individual parameteré A and u.

The most obvious method of estimating A and u would be to observe the
operation of the queue for a fixed time s, note the number of arrivals n, the
number of departures m, and the busy time 7 (that is, the total time during which
n(¢) > 0). Then X would be estimated by n/s, and u by m/7. In the non-stationary
case, p = 1, this may be the best one can do. However in the stationary case,
p < 1, the initial value of n(f) is available, which, under the assumption that the
process has attained its stationary state, constitutes extra information from
which one should be able to make more accurate estimates. However, in order
to obtain maximum likelihood estimates, it is necessary to study the distribution
of the random variables involved under the condition that the total observation
time is fixed, and this turns out to be extremely complicated. In the following it
is noted that if the process is observed for a constant busy fime r, rather than
total time, a considerable simplification is achieved and the problem then admits
of an elementary solution.

2. Sampling method. One observes that the time axis may be decomposed
into two random sequences of intervals: the busy infervals consisting of all times
when the queue size n(f) is greater than zero, and the free infervals consisting of
all times when n(f) = 0. The assignment of the endpoints of these intervals is
arbitrary and immaterial. By the busy time between t, and I, is meant the sum
of the lengths of all the busy intervals, or parts of intervals, between time ¢,
and time #; > f, . During any busy interval arrivals and departures proceed as
independent Poisson processes with parameters A and u.

Let the process now be observed until the busy time reaches some preassigned
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fixed value 7, and the values of the following random variables noted:
v = n(0), the initial queue size;

m = the total number of departures during this period;

T

n = the total number of arrivals up to time 7.

the time of the mth departure;

It

3. Construction of a likelihood function. It is assumed that the system is
proceeding in equilibrium, i.e., p < 1 and » is taken to have a geometric dis-
tribution with common ratio p.

Let us further define the random variables z; = the ¢th arrival time, y; = the
7th departure time, and z; = busy time up to the 7th departure, 7 = 1,2, --- |
(z; = ys = 2, = 0 for¢ = 0).

Note that
Yo = Max [Yia, Tiw] + 20 — 2i1 .
Thus y1, - - - , y» are determined recursively by 21, ---, 2z and 1, -+ , T,
and consequently the entire queuing process may be described by specifying »,
the sequence z;, z2, ---, and the sequence 2;, 2, --- . The sequences z;,

%y, ---and 2, 22, - - - represent the transition times of independent Poisson
processes having parameters N and p, both processes being independent of ».

Since 21, 22, - - - refers only to busy time, when arrivals and departures proceed
independently, the z;, », - -+ process will be independent of the 2, 22, - -«
process.

The likelihood function L may now be constructed stepwise as follows:
(a) » has a geometric distribution with frequency function

(1—_ <§> y=0,1,2 .
AV

(b) m is a function of the z; only—namely, the maximum index for which
2m < 7. Thus m is independent of » and has a Poisson distribution with

frequency function

e_“fglﬂ)—m m=20,1,2---.
m! b b b b
(¢) The conditional distribution of 21, - - - , 2., given m, is that of a random
subdivision of a fixed interval of length 7 into a fixed number, m + 1,
of parts, and is thus independent of g, (and, of course, of A).
" (d) When » and m are given, 21, - - , Tm_, will be independent of z;, - - - , 2w ,
and will have joint frequency function

AT 0SS S By < 0,

(¢) When v, m, 21, -+, Zm, and @1, -+ + , Tm—y are given, T = y,, is deter-
mined, and the number of arrivals from time x,-, to time 7', namely
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n — m + v, will have a Poisson distribution with frequency function

e—)\(T—zm_,) [)\(T - xm—v)] oty

(n —m + »)! ’

Multiplying all these conditional frequency functions together, one obtains for
the likelihood function

L = <1 _ 3_) e—y‘r—)\T . ”,m—v . Xn+r . K,

n—m=4+v=01,2---,n+4+»>0.

where K depends on 7, m, n, z1, -+ , 2m, and ., , but not on A or u. This
formula was derived under the assumption that m — » > 0, but it is easily seen
that the same formula holds when m — » < 0.

4. Maximum likelihood estimates and approximations. Standard methods
of obtaining maximum likelihood estimates can now be applied. It has been
assumed that the process is stationary, p = (A/u) < 1. Consequently A and g
must be confined to the region 0 < N < p. It is easily seen that at least one
interior maximum exists. On differentiating L with respect to A and u and setting
the derivatives equal to zero, after some simplification, the following equations
for the maximum likelihood estimates \ and £ are obtained:

A= —No+ v —AD),
A=A —=p)@m — v — AiT).

Substituting A = 4, and eliminating £, one obtains the following quadratic
equation for the maximum likelihood estimate 4 of the traffic intensity p:

@) =m—v =T - [(m — )T+ (n+ v+ Drlp + (0 + »)7 = 0.

Since f(0) = (n + »)7 > 0, f(1) = —7 — T < 0, exactly one solution of this
equation lies in the interval 0 < 4 < 1. This unique solution will be the required

estimate.

In order to obtain a simple rational approximation to , one notes that if the
termsm — » — 1 and n 4+ » 4 1 are replaced by m — » and n + » respectively
in the above quadratic equation, the resulting equation will have unity as one
root and the other root will be

_ (497
L= (m —»)T"

Presumably, under certain conditions, p; will be an approximation to . More
precisely, by a straightforward computation one can show that, provided
0 < p1 < 1, then

pF<m
and

2p1

0< - < —_
TP =) m =)



1040 D. A. S. FRASER

Consequently, p; will be a good approximation to 3 whenever p; is bounded

away from unity and m — » is large.
On substituting back, one obtains for the maximum likelihood estimates of

Aand

5\=(n+m)ﬁ
T+ 77

Aa_nt+m

'u—ﬁT—l-r

Whenever the approximation of p; for 5 is valid, the following simple approxi-
mations for A and £ result:

Note the difference between these formulas and the formulas n/T and m/r
which would result if the initial distribution was neglected as mentioned in
Sec. 1.
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MOST POWERFUL RANK-TYPE TESTS

By D. A. S. FRASER
University of Toronto

For some non-parametric problems the use of the invariance principle reduces
the class of suitable tests to those based on ranks of ordered observations. To
obtain among these the test that is most powerful from some specified alternative
distribution, it is necessary to have the marginal probability distribution of the
rank statistic under the alternative. Hoeffding [1] gives a method that expresses
the probabilities of such a distribution in terms of an expectation taken with
respect to the hypothesis distribution. Applications have been made to the
" problem of location (Hoeffding [1]) and to the problem of randomness (Lehmann
[2] and Terry [3]). We extend Hoeffding’s method and, for the problem of loca-
tion with symmetry, derive a locally most powerful rank-type test against normal
alternatives.
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