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ON THE DETECTION OF DEFECTIVE MEMBERS OF LARGE
POPULATIONS?

By ANDREW STERRETT

Denison University

1. Introduction. The Annals of Mathematical Statistics contained a note by
Robert Dorfman [2] explaining an efficient method for eliminating all defective
members of certain types of large populations. In particular, the application con-
sidered was the weeding out of all syphilitic men called up for induction into the
armed forces. Instead of testing each blood sample individually, Dorfman pro-
posed to pool k samples for a single analysis. The presence of syphilitic antigen
in the pool led Dorfman to make k individual tests; the absence of the syphilitic
antigen allowed him to clear k¥ men with one test. One purpose of the note was
to find the optimum % and the efficiency of the method for various prevalence
rates of defectives. The purpose of this paper is to increase the efficiency of
detection.

Rather than analyze each sample of a defective pool, it is proposed to make
individual tests only until a defective is found. For small prevalence rates of
defective members it is likely that a new pool formed from the untested samples
will prove to be negative. If so, the work is finished for that pool; if not, one
should test individuals again—but only until a defective is found. Continuing
this procedure until a negative pool is found will increase Dorfman’s efficiencies
by about 6 per cent (from a savings over individual inspection of 80 per cent to a
savings of 86 per cent for a prevalence rate of defectives equal to 0.01).

2. Notation. The probability that a pool containing k samples has exactly ¢
defective members is given by Pri(¢); the expected value of the number of analy-
ses required to isolate the ¢ defectives by the proposed method is E(z).

Given a universe of N elements with p per cent defective, E(N, k, p) is the
total expected value of the number of analyses required to investigate the uni-
verse by pooling k samples at a time.

3. Procedure. Using the definition of expectation of a random variable,

k
(1) BN, k) = % 32 (Puti) Bu)}.
Before E(N, k, p) can be evaluated it must be shown that
. ) . ) .1
(2) EL(Z)—mk+$+l+m_2$‘E.

When there are no defective elements in a pool, one laboratory analysis will
suffice. That is, E.(0) = 1 as Eq. (2) verifies.
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F16. 1. Comparison of economies resulting from testing by two group methods
Now

Ein) = 1 +% {1 + Eeaaln — 1)}

= fk—G4+n—1\ n .

+ 5 (B EE2 1) 2516 40 + Bt — 3]
The first term on the right-hand side of Eq. (3) represents the initial group

test. The factor n/k in the next term is the probability that the first sample

tested is defective; the factor {1 + E,i(n — 1)} is the sum of the number of

tests required to find a defective on the first trial and the average number of

tests needed to find (n — 1) defectives in the remaining pool of ¥ — 1 members.
The probability that the first j samples are not defective is

3

1:[1[10 - G+n—- Dk - (- 1),

while the probability that the (j + 1)st element tested is defective is n/(k — 7).
The number of tests required to find the first defective is (j + 1,) and
Ey_tj4y(n — 1) is the expected number of tests required to find the remaining
n — 1 defectives among the k¥ — [7 + 1] members.
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Equation (3) reduces to the form given by KEq. (2) when values of
By (jin(n — 1) obtained from Eq. (2) are properly substituted. The proof,
then, of the formula for F;(z) follows by induction.

4. An approximation to E(N, k, p). The probabilities connected with all but
the first few terms of E(V, k, p) are insignificant for small p. Therefore an ap-
proximation to E(N, k, p) is defined as

B,k p = (V) 3 PrB),

where m is the smallest integer such that Y 7, Pry(2) > 0.99.

TABLE I
Comparison of efficiencies by grouping under the Dorfman plan and the new method
Dorfman Plan New Method
5 Lab analyses . 3 Lab analyses .

P Optimum % per hundred (m-+1)*ork Optimum & pelr':ll(l;zx,ng;'ed Difference
0.001 32 6 2 47 4 2
0.003 19 11 2 30 8 3
0.005 15 14 2 22 10 4
0.007 12 16 2 20 12 4
0.01 i 11 20 2 16 14 6
0.02 | 8 27 3 11 22 5
0.03 6 33 3 9 27 6
0.04 6 38 3 8 32 6
0.05 5 43 ! 3 7 35 8
0.06 5 47 | 3 7 39 8
0.07 5 50 ! 3 6 42 8
0.08 4 53 3 6 45 8
0.09 4 56 3 5 48 8
0.10 4 59 3 5 51 8
0.11 3 4 54
0.12 4 65 3 4 57 8
0.13 4 67 3 4 59 8
0.14 3 4 61
0.15 3 72 4 4 65 7
0.20 | 3 82 3 3 74 8
0.23 ' 3 3 80
0.25 3 91 3 3 84 7
0.26 3 3 86
0.27 ; 2 2 87
0.30 ! 3 99 2 2 90 9
0.32 2 2 93

10.35 3 106 2 2 96 10
0.38 i 2 2 100

* (m + 1) is the number of subdivisions into which each member of the pool should be
subdivided in order to be 99 per cent sure of knowing the history of the pool before exhaust-
ing any member.
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The number of terms required to calculate E'(N, k, p) is m + 1. This is also
the minimum number of subdivisions into which an element must be divided
by a laboratory technician to be at least 99 per cent confident that he will know
the history of the group before exhausting any element. Values of m + 1 cor-
responding to many p’s will be found in Table I.

b. An error expression. Define § to be E(N, k, p) — E’(N, k, p). In other words,
3 = (N/k) 2Ziemir {Pre())Ex(s)}.

Since Ei(k) = 2k — 1, it follows that 8 < (2k — 1) (N/k) D tmmt1 Pre(d).

Arbitrarily, m is chosen large enough to make D o Pri(d) greater than 0.99.
Therefore, Y s—ms1 Pr;(i) is less than 0.01. Consequently,

8 < (2k — 1)(N/k)(0.01) = [2 — (1/k)]/100-N.

That is, 8 is less than 2 — (1/k) for each 100 items of the universe. This is a
generous error since it was assumed that every pool containing more than m
defectives contains k defective elements.

6. Conclusions. Using E’'(N, k, p), the optimum £ and their corresponding
economies are determined for many prevalence rates in the range 0.001 =
p = 0.38. Values of E’(N, k, p) are calculated for k = 4, 8, 12, - -- and at the
intermediate integral values necessary to insure that the minimum value is
found. Results of this work and comparison with Dorfman’s efficiencies are

found in Table 1.
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MAXIMUM LIKELIHOOD ESTIMATES IN A SIMPLE QUEUE

By A. Bruce CLARKE!
University of Michigan
0. Summary. The problem of obtaining maximum likelihood estimates for
the parameters involved in a stationary single-channel, Markovian queuing
process is considered. A method of taking observations is presented which simpli-
fies this problem to that of determining a root of a certain quadratic equation.
A useful and even simpler rational approximation is also studied.

1. Introduction. By a simple queue is meant a queue having a Poisson input and
a negative exponential service time (type M/M/1 in the notation of Kendall
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