POLYA-TYPE DISTRIBUTIONS, III: ADMISSIBILITY FOR
MULTI-ACTION PROBLEMS

By SamuerL KArRLIN
Stanford University

In the previous publications, [1], [2], and [3], several types of decision prob-
lems associated with the general two-action problem (e.g., generalized testing
problems) have been investigated under the condition that the underlying dis-
tributions have a density p(z, w) with  the observed value, w the state of nature,
such that p(z, w) is Pélya-type. In this paper we continue the study of the prop-
erties of best procedures in the case of multiple-action problems and problems of
estimation. This part of the investigation is concerned principally with some
detailed statistical queries for the special case when p(z, ) is Pélya-type 2 or in
more common statistical terminology when p(z, ) possesses a monotone likeli-
hood ratio. The main problem dealt with in the present manuscript is the ques-
tion of admissibility of so-called monotone procedures.

To set up a common language, we summarize the statement of the general
multi-action decision problem. The n action problem is usually formulated as
follows: A real random variable X is observed (usually a sufficient statistic)
whose distribution P(z, w) has the form

Pe,e) = [ plt @) du(o),

where the density p(£, ») has a monotone likelihood ratio and the parameter, ,
describes the state of nature. For a fixed value of one of the arguments P(z, )
will be assumed to be a continuously differentiable function of the other argu-
ment. Throughout our discussion we may assume that w ranges over an interval
Q of real values (for definiteness, let @ = (— 0, «)) and that u is a completely
additive measure defined over the Borel field of subsets of the real line.

It is known from the theory of distributions with a monotone likelihood ratio
that the set of possible observations X. = {z | p(z, @) > 0} form an interval.
We shall further assume that X, is independent of w. That p(£, ) has a meno-
tone likelihood ratio (strict) means that p(2: , wi)p(xs , w2) — (21, W)P(T2 , 1) =
0 (>0) for z; < z; and w; < w, with z; belonging to X and w; in Q. Most of the
standard densities occurring in statistical practice possess a monotone likelihood
ratio. This class of densities includes, in particular, the exponential family, the
non-central 7, and the non-central F. The basic property of densities with a
monotone likelihood ratio useful in our analysis is its variation diminishing na-
ture. That is, if 2(w) changes sign once from, say, non-negative to non-positive
values, then

o) = [ Mz, o) dF ()
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840 SAMUEL KARLIN

changes sign at most once. If, in fact, g(x) does change signs, then as x increases,
the values of g(x) must also change in the direction of non-negative to non-
positive values.

There exist n possible actions which a statistician may take. When taking ac-
tion 7, the loss is assumed to be measured by the function L(z, w) = Li(w), 1 = 1,

-, n, where w represents the true state.

Throughout what follows the loss functions and the densities are assumed to
satisfy enough smoothness properties to insure the existence of all integrals in-
volving these quantities, as well as to justify all differentiation arguments. The
order of the operations of differentiation and integration will be reversed on
several occasions in the analysis. The assumption of validity for such inter-
changes is not overly stringent in view of the fact that except in Sects. 5 and 6
the loss functions are step-functions and the density is continuously differen-
tiable.

In addition, it will be assumed henceforth that the loss functions L;(w) satisfy
appropriate monotonicity assumptions. The precise statement of this is as fol-
lows: The functions L,(w) — Lija(w) (Z = 1,2, ---, n — 1) as functions of w
have exactly one change of sign and the sets S; = {w | L;(w) = min; L;(w)} are
non-degenerate intervals having the additional property that

S <8< <8,

where S; < S;;1 means that S; lies to the left of S;;; with only the boundary
points as common members for two successive S;. In the case of such a loss
structure, we say that the statistical problem has a monotone preference pattern.
This is to suggest that if the parameter » were known then the various actions
1,2, --- up to n are preferred respectively for increasing values of the state of
nature w, a given action ¢ being favored for known w if and only if L;(w) < Lj(w)
for every j # 1. The fact that each of the sets S; is a non-degenerate interval im-
plies the existence of w} ,% = 0,1, - -+ , n, wherewy = — o and o = + o, such
that ] < wi4; and action ¢ is definitely preferred for wj—; < w < w; . The values
wy are necessarily the unique change points of Liy1(w) — L,(w). For simplicity of
exposition we have chosen to make the change points wi distinct although the
reader may supply appropriate modifications to the argument to extend our
studies to the case when some of the ! coincide. (See [1) and [2].)

A randomized decision procedure ¢ for the statistician is described by an
n-tuple of functions

Y = (‘pl(x), ¢2(x)’ toc ’¢n(x)))

¢i(z) = 0and D_pi(x) = 1, where ¢;(z) is interpreted as the probability of taking
action ¢ when z is observed. The expected risk becomes

o) = [ p(a,0) (3 L@ duta)
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A procedure ¢ is said to be admissible when there exists no other procedure ¢*
such that p(w, ¢*) = p(w, ¢) for every w with inequality for at least one value of
w. In other words, a procedure is admissible if it cannot be improved upon in
terms of expected risk—independent of the state of nature. Admissibility for a
given decision procedure is an obvious prerequisite for its use. Hence, it is of
some significance to be able to characterize all admissible procedures. A pro-
cedure ¢’ is said to be Bayes with respect to a distribution F(w) (referred to as
the a priori distribution of the state of nature) if

p(F,¢") = fp(w, @) dF(w) = min/p(w, @) dF ().

It is readily seen that if ¢° is unique Bayes with respect to a distribution F(w)
(ie., ¢ is the only procedure minimizing p(F, ¢)), then ¢° is admissible. Conse-
quently, one method of establishing that a given procedure is admissible is to
show that it is unique Bayes with respect to some distribution F(w). In numerous
cases, we shall actually verify this property.

In the n action problem a procedure ¢ = (g1, @2, - - , ¢n) is said to be mono-
tone if there exist critical numbers, 20 S v S 02 = - S T S 2, (00 = — o,
T, = -+ ) such that

(x) = fl g <z <uw
i W z>x,2<ziy

and randomization may oceur at & = z;, X1, 1.6, @.(x:) = \; and g 1(x:) =
1 — X; (0 £ X\; £ 1). A monotone procedure is therefore fully specified by (z; ,
Toy** y&n1; A1y ** ,An—y) providedz; < x;4; and0 = \; = 1 with appropriate
modifications on the restrictions for A; when allowing for z; = z;41 . It was shown
in [2] that the monotone procedures form a complete class. Moreover, the proof
of completeness of the preceding reference contained an explicit construction
which shows how to improve by a monotone procedure any specified non-
monotone procedure. However, the question of determining when monotone
procedures are admissible is of greater complexity. In the two-action problem,
it 'was shown in [1] under almost negligible restrictions that all monotone pro-
cedures are admissible. In direct contrast, for the case of a general three-action
problem the characteristic of admissibility ceases to be a property shared by all
monotone decision procedures. For a counterexample see [2]. Apparently the
explicit magnitudes of the loss functions and not only the preference regions have
a direct influence on whether a procedure is admissible or not. Nevertheless, it
is possible to characterize a wide class of multi-action monotone decision prob-
lems for which all monotone procedures are admissible. Consider a collection of
loss functions L;(w) satisfying '

(I) |L,(w) - L,-.H(w)[ = b,'j fOI' win Sj

(=12 ---,n—1landj =1, ---,n) such that b;; = 0 for every ¢ and j,
by > 0fork = 7,andfor¢ =1,2, --- ,n — 1,
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b b
b +1,/ bi+1 &

whenever 1 £ 7 <7zand?+ 1 =k =< n. (For instance, if b,; = ¢ > 0 then (II)
is certainly satisfied.) We will show later that for monotone loss functions satis-
fying these conditions all non-degenerate monotone procedures are admissible.
In fact, all non-degenerate monotone procedures are found to be Bayes with re-
spect to suitable finite distributions.

By allowing the number of possible actions to become infinite, our multi-
action problem approaches an estimation problem. That is, the estimation prob-
lem may be viewed both formally and practically as a limit of finite action
problems. Therefore, aside from interest in itself, the n action decision problem
also suggests and leads to consequences about estimation problems. In the case
of estimation a non-randomized procedure is described by a mapping a(z) of the
observed value x into the space of actions. The loss function L(a, w) is now a
function of the action a taken and the state of nature w. For example, (¢ — )’
would correspond to square error where a represents the estimate of w used.
Similarly, @ — o[ is the commonly used loss function measuring absolute error.

The case where

Liw) — Lia(w) = {

(IT) z0

—a foisinS;,j =1
+a fwisin S;,7 =217+ 1,

or specifically L;(w) = a|j — 7| for w in 8;, may be considered as the discrete
analog for n actions of the absolute error loss function. This last example satisfies
the conditions of (IT) so that all non-degenerate monotone procedures are ad-
missible. In contrast, discrete analogs of the square error loss function do not
satisfy (IT), and it is unknown whether all monotone procedures are admissible.
In See. 2, we shall investigate in detail the discrete absolute error loss functions.
With the aid of suitable limiting arguments admissibility for some statistical
procedures of the estimation problem with absolute error loss function will be
presented in Sec. 4.

Also, in Sec. 3 we analyze the general monotone loss functions satisfying prop-

erties (I) and (II). In Sec. 5 we investigate a loss function for which the penalties
are constant when we underestimate and a loss given by a monotone increasing
function of the extent of overestimation when we overestimate. Minimal com-
plete classes of statistical procedures may be fully determined. All monotone
strategies are in this case admissible. The reader should bear in mind that these
results are in sharp contrast to the general n action problem where all monotone
procedures are not necessarily admissible.
. Within a complete class the statistician obviously should not choose an inad-
missible procedure. The principal result of this paper is the validation of the fact
that at least for loss functions satisfying (I) and (IT) the non-degenerate mono-
tone strategies are admissible. The remaining deficiency of this theory is that in
the n-action problem the class of monotone strategies represents an n — 1 param-
cter family of procedures. Thus the task of choosing a single procedure is still he-
wildering and some cogent principles are needed to reduce the size of the class.
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In the following article [4], we advance some principles to guide the statistician
in selecting a specific monotone strategy from the essentially complete class of
all monotone procedures.

The study of admissibility concerning the square error loss function will be
presented in a later publication.

Finally, I wish to express my indebtedness to Mr. Rupert Miller for his help
in the preparation of this manuseript.

1. Some preliminary lemmas. Basic to our study of the question of admissi-
bility for loss functions satisfying the conditions of (I) and (II) are the following
propositions concerning solutions of systems of linear equations of a specific form
which have special properties. These linear equation results are singled out here
because of their independent mathematical interest. The reader interested only
in their statistical relevance may on first reading pass over their proofs.

LeMMA 1. The system of n homogeneous equations in n + 1 unknowns, n = 2,

n+1

i
(*) Zaijxj—.z. aijxj:o’ Z.=1,"-,'n,
Jj=1 J=1+1

where A, the coefficient matriz of size (n X n + 1), satisfies the following properties:
(i) a;j = O foralli,j;au >0fori=1,---,n

@) Fori=1,2,---,n — 1,

Q5 (L5

v

0

Qit1,j  Qit1,k

forl 2 jSiandi+ 1 £k £ n4 1 with strict inequality for some 3

for each k,
has a unique (except for a multiplicative constant) solution 2= (a1, )
which has in addition the following properties:

(@) 2§ #0,j =1, ,n+1
(b) sgnal = sgnay = --- = sgn Loy .

An equivalent formulation of Lemma 1 in terms of non-homogeneous linear

equations is as follows:
LeMMA l1a. The system of n non-homogeneous equations in n unknowns

Z Qi Tj — Z Qij Tj = Ginil
j=1 j=i+1
where the n X (n + 1) matriz A = (a;) satisfies properties (i) and (ii) of Lemma 1,
has-a unique solution a® = (xy, -- -, x%) which has in addition the property that
20>0,i=1,--+,n.

The proof of the equivalence of L.emma 1 and Lemma la is straightforward
and will be omitted.

Proof of Lemma la (by tnduction). Suppose the result is true for n — I non-
homogeneous equations in » — 1 unknowns. We prove it is also true for n
non-homogeneous equations in n unknowns.
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Consider the first n — 1 equations of the system of n equations. They can be
written as

T —1
(1) Zaiixi—' Z Qi Tj — Qin & — Ay = 0 Z=177n_1
j=1 J=i+1
where z, = a, or as
T , n—1 , ,
(2) 20T — 2 05T — G =0 t=1--,n—1
j=1 J=i+1
4 . ’ . .
wherea;; = a;;forj = 1,2, -+ | n — 1,and ain = @ina + G;nqa . It is readily

verified that the matrix A’ = (a;;) satisfies property (ii) provided o > 0. Prop-
erty (i) is also satisfied so by Lemma 1a for the case of n — 1 equationsinn — 1
unknowns there exists a unique solution z(a) = (z1(a), - -+, Zoa(a)) to (1) for
eacha = 0and zi(a) > 0,2 =1, --- ,n — 1.

Let g(x(a)) = amxi(a) + - 4+ @nnana(e) + Gma — @ynyr. For a >
Gnni1/ Gnny g(@(@)) > O since x(a) > 0,7 = 1, -+, n — 1. We assert that for
a = 0, g(x(0)) is <0. Suppose the contrary; i.e., suppose g(x(0)) = 0. If the
equation

an—l.lxl(o) + e + an—l,n—lxn—l(O) — Op—intl = O
is multiplied by @, .1 , the equation
anlx](o) + e + an.n—-lxn——l(o) - an.n-i—l 2 0

is multiplied by —@y-1,n41, and the two equations are then added, the result is

Qp—1,1 Op-1,n+41 200) + -+ + Qp-1,n-1 Qn-1,n41 Z21(0) < 0.

an R an n4l

An1 an,n—{-l

But each determinant is non-negative and at least one is strictly positive with
2:0) > 0,7 =1, ---,n — 1. This leads to an obvious contradiction. Therefore;
g(x(0)) < 0. Since g(x(a)) is a continuous function of «, there must exist an
ap > 0 such that

anlxx(ao) + - 4 GnnTa- 1(ao) + Gunas — Appy1 = 0.

Consequently, one solution to the system of n non-homogeneous equations in
the n unknowns which has the property that z7 > 0,¢ = 1, ---, n, is2® =
(Tilan), * -+, Tua(a), o).

To complete the induction proof of the existence of a positive solution we must
verify that the lemma holds for the case n = 2. This task is reduced to routine
~ enumeration of cases with direct use of the hypothesis.

It remains to establish the uniqueness of the solution. Suppose there exist two

solutions z” = (z1, -+, z) and 3° = (31, -+, y5) such that 2" > 4. Then
(3> Zaiizi—' E a;z; =0, i1=1--,n
=1 J=i+1

forz; = x¢ — yv, ¢ = 1, --- , n. Consider the first n — 1 equations. By the in-
duction hypothesis the solution to this system of n — 1 equations in'n unknowns
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is unique (except for a multiplicative constant) and possesses properties a and b.
Since z; = c(z} — i) for ¢ 5 0 is the family of solutions, without loss of gen-
erality it can be assumed that 2} — 7 > 0,7 = 1, - - - , n. But for the nth equa-
tion this yields

anl(x(l) - y(l)) R anr(xgs - y(:l) > 0)

which contradicts (3). That uniqueness holds for the case n = 2 is easily checked.
Thus, 2} = 7.

This lemma can be expressed in terms of appropriate subdeterminants as fol-
lows:

CoRroLLARY 1. The signs of the n + 1 n X n subdeterminants of the coefficient
matriz A of the system of equations (*) obtained by deleting successive columns must
alternate.

LemMma 2. The system of n + 1 equations in n unknowns

j—1

@) Zlaifyi_zaij?/i=ciy j=1--,n+ 1,
1= Ge=j
where
() a;;j=04alli, j;a:6 > 0fori =1, -+, n
() Forj=2,---,n—1,

Ui Qjrl | S 0

a;; Qi
forj +1 =1 =< n, 1=k = jwith strict inequality for some ¢ for each k.

(iii) A = (as;) satisfies condition (ii) of Lemma 1.
(IV) ng 0>]= 17 et ;n+ 1

has a solution only if ¢; = 0,5 = 1, --- , m =+ 1, and in this case the only solution
s the trivial one y; = 0,4 =1, --- | m.

ProoF. Suppose ¢; > 0 for some j and there exists a solution 3 = W1, .y
to the system of equations (4), which can be written in matrix notation as yA* =
c.c = (&1, -+, cays) and A* = (af;) where af; = a;;, ¢ < j, and af; =
—a;;j, ¢ 2 j. Since the conditions of Lemma 1 are satisfied for the system of
equations —A*z = 0, there exists a solution 2°, all of whose components are
positive. Since ’A* = ¢ and 4*2° = 0,

0 < (¢,2") = (§"A% ") = (4, 4%") = (), 0) = 0,

where (e, 8) denotes the inner product of the vectors « and 8, which is a contra-
diction. Therefore, ¢c; = O forj =1, --- ,n + 1.

If we omit the first and last columns of the matrix A* and consider the sys-
tem of equations

Qnn Yn — Qn1,nYn—-1 **° —0A2a Y2 — G Y = 0

Ouo Yn + Q12 Yn-1 **° Fa0Y2 — G2th = 0
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propertics (i) and (i) reduce to the conditions of Lemma 1 for this system of
equations, so that any solution 3° = (y1, -+, y%) to (4) has its components
of the same sign and unequal to zero. But this is impossible since

An1lYn + Ap—-1,1Yn—1 + o0 4 aups

will be unequal to zero if 47 > 0 for all ¢ or y? < 0 for all 7. Thus, 47 = 0 for
all 7.

In closing this section, we remark that an alternative, more complicated
proof of T.emma 1 was given independently by P. Braumann.

2. Discrete absolute error loss functions. In the n-action problem under
consideration in this section, the loss functions Li(w), ¢ = 1, -, n, will have
the following form: There exist n — 1 values ], - -+ , wn_s such that L;(w) =
¢|j — 1| for w in the interval (wj—y, wj], j = 1, - -+, n. (By definition wg = — oo
and w, = 4+ ®.) This system of loss functions may be viewed as the discrete
analog of the absolute error loss function in estimation problems. The loss for
any action is proportional to the distance from the best action. As n, the num-
ber of actions, tends to 4« and | — wi_s| — O suitably as n — + o for all 4,
then L, (w) — ¢ | @ — w|, where ¢, is defined by a ¢ (wi,—1 , wi,]. Thus the abso-
lute error loss function is an appropriate limit of discrete absolute error loss func-
tions.

The veal random variable X will be assumed to be distributed according to

P, w) = f_ : p(&, w) du(f),

which depends on the real parameter w. p(, ) will be assumed to possess a strict
monotone likelihood ratio. The requirement of strictness may be relaxed in
many cases, but to avoid inessential, tedious details we have preferred to impose
the slightly stronger assumption of strictness.

For the type of loss function described above, it will be shown in this section
that any non-degenerate monotone procedure characterized by » — 1 points
z , xy, ---, re_y and n — 1 probabilities A RN A, is admissible. As was
pointed out, in the introduction, this is not true for general loss functions when
n = 3.

LeMMaA 3. Any non-degenerate monotone procedure is Bayes against a discrete
a priori distribution F* which concentrates all its probability at n points; each in-
terval (oo, , wi), 2 = 1, -+, m, contains a mass-point of F*, but the location of
the mass-point in the interval is arbitrary. The non-degenerate monotone procedure
is uniquely Bayes with respect fo F* except for the randomizations A3, - - -, Aot

Proor. TFor any observed z, the a posteriori risk of taking action ¢, with respect
to the a priori distribution F7) is

(1) = K j_“” Li{w)p(z, w) dF (w),
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where K™ = / p(x, w) dF(w). Action 7 would be preferred to action ; 4 1

for those values of x for which
5) w1 =@ = K [ L) — L, o) &)

is > 0, and 7 + 1 would be preferred to ¢ when 7,( + 1) — 7.(¢) < 0. But
Liy(w) — Li(w) changes sign exactly once and changes from positive to nega-
tive as o increases. Since p(z, w) is strietly Pélya-type 2, by Theorem 3 of [3]
(¢ + 1) — 74(¢) has at most one change of sign and at most one zero counting
multiplicities. Furthermore, in the event that 7.(¢ + 1) — 7,(¢) does change sign,
then it must change from pos1t1ve to negative as x increases [1]

Let w; be any arbitrary point in the interval (@i, &, =1, n lItis
a consequence of Lemma 1 that n constants &, - -, & with & > 0 215, =],
can be chosen such that the monotone procedure described by (), -, ahy:
Ay, -+, Ah_) is Bayes against the distribution * which concentrates proba-
bility £] a,t the point w; :

f_ : [Lia(w) — Liw)lp(e, w) dF* = C{Z':l (e, w)é — ,~§ . p(z. wf)éi}-

Indeed, consider the system of equations

J-—%

le(xg,wj)fj— Z} pal, w)fi =0, i=1,- .n—1.
=

Since p(x, w) has a strict monotone likelihood ratio, the conditions of Lemma |
are satisfied so there exists a solution to the above system of equations such that
£ > O0forall 2 and > r& = 1. Thus

(6) f_: [Lip1(w) — Liw)lp(®, w) dIF*(w)

has a zero, its ouly zero, at the point 7 . Consequently, action 4 is preferred for
z < zyand action ¢ + 1 is preferred for > z7 . Similarly, action ¢ + 1 is
preferred to action 7 - 2 for ¢ < 341 . Since &7 < 341, action 7 is preferred to
action 7 + 2 for 2 < :v,. . Repetition of this argument shows that ¢ is preferred
toallj > zforz < x,. . A similar argument shows that < is preforrod to all ae-

tions j < 4 for x > z1_;. Thus action {7 is the best action for z ¢ (xz_] , ). At

x = x7 it is immaterial whether action 7 or 7 + 1 1q taken since 7:(a}) = riya(2).
All randomizations between 7 and 7 + 1 at = z7 will produce the same overall
risk. This implies that the monotone procedure (3, --- , Za_1 ; AL AL

is Bayes against F'*. Furthermore, it is the unique Bayes strategy agamst F*
(except for randomization allowed for action 7 and 7 + 1 at the points z7) since
7 is the unique zero of (6).

The significant result of this section which is deduced from Lemma 3 is as

follows:
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THEOREM 1. All non-degenerate monotone procedures are admissible.

Proor. Suppose ¢’ is not admissible. Then there exists a decision procedure
e* = (¢f , -+, o) such that p(w, *) = p(w, ¢") for all w with strict inequality
for some ’. Suppose o' falls in the interval (wn_;, wh]. Select n — 1 specific
parameter points of @ so that (w;, ---, wha, &, Wy, -+, w,) satisfies
wie(wig,w,i=1,+ , h—1h+1,--- , n. Then, by Lemma 3 a discrete
probability distribution F* can be constructed which has positive probability at
each of these points and only at these points, and against which ¢ is Bayes.
But since p(w;, ¢*) < plw;, ¢") fori =1, --- ,h —1,h+ 1, ---, nand

(o, %) < p(o, "),
it follows that

f plw, *) dF*(w) < f p(w, @) dF*(w),

which contradicts the fact that ¢’ is Bayes against F*. Therefore, ¢” must be ad-
missible.

The following lemma strengthens slightly the results of Theorem 1.

LemMa 4. If o* and ¢° are two non-degenerate monotone procedures and p(w, ¢*) =
p(w, @), thenxf = 23 ,i=1,--- ,n — 1,and \f = X! for all 5 such that u(z?) > 0.

Proor. Since monotone procedures are uniquely Bayes except for randomiza-
tion at the endpoints of the intervals, p(w, ¢*) = p(w, ¢’) evidently implies that
af =2i,i=1,---,n — 1. It can be easily verified (cf. Theorem 1 of [2]) that

0 n—1 7 7
p(w,¢") — plw,*) = [ °°10(~'6,w){ ; [Li(w) — Li+1(w)][jz=;¢l’-(x) - ,Z;“’? (x)]}dn(x)

n—1
= Zl [Liw) — Lin(@)lp(ai, ©)A? — AH)u(?)
n—1
= 21 [Lyw) — L;+1(w)]p(x2 ’ w)n;
where n; = (A7 — A)u(z?).
Evaluation of p(w, ¢") — p(w, ¢*) at n points @, , - - - , w, which satisfy
w; & (wg-x ’ wg]

yields the system of equations

j—1 n—1
c{zl p(x? ) wj)"li - Z P(x? ’ wj)ﬂi} = Oy j =1,---,n.

i=j

Since p(x, w) has a strict monotone likelihood ratio, the conditions of Lemma 2

. . * 0
are satisfied, and therefore y; = 0,7 = 1, --- , n — 1. Hence A\ = \; whenever
0
M(x,') > 0. 0 o
A monotone procedure is said to be degenerate if z; = ;4 for some 7. Several
. .. . . 0 0 0
intervals can be missing as well, in which case ; = z;11 = --- = x;4. for the

appropriate combinations of 7 and k. Theorem 1 does not extend to the case of
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degenerate procedures; i.e., there exist inadmissible degenerate monotone pro-
cedures. However, the degenerate monotone procedures do possess analogous
Bayes properties.

Lemma 5. If the a priort distribution F concenirates no measure in the interval
(wi_1, wil, then x3_y = 23 in the (monotone) Bayes sirategy with respect to F. That
is, action 1 is never taken except possibly at the point x; where randomization occurs.

ProoF. Since Li(w) — Lipy(w) = Li(w) — Li(w) for o & (wi_1 , i),

[ 166) = Las@pta, o) aF@) = [ is(e) — Lilple, o) dF ().

But since these two integrals are identically equal they must have the same
zero (if one exists) at some point z'. Action ¢ is preferred to action 7 4+ 1 for
z < 2’ and reciprocally for # > 2’. Action 7 — 1 is preferred to action z for
z < 2’ and vice versa for x > 2/. Combining these two facts, it is seen that
action ¢ — 1 is preferred to action ¢z + 1 for x < 2’ and vice versa for z > z'.
Action 7 is preferred nowhere except possibly at the point #’. Thus, 27—, = a3 = a’.

The analog of Lemma, 3 for degenerate monotone procedures is as follows:

LeEmMmA 3a. Any monotone procedure ¢ with k degenerate intervals, 1 < k <
n — 1, is Bayes with respect to a discrele a priori distribution F* which concentrates
all its probability at n — k points; each interval (wi—y , wy] corresponding to a non-
degenerate action inlerval in the X-space conlains a mass-point of F*, but the loca-
tion of the mass-point in the interval is arbitrary. The monotone procedure is uniquely
Bayes against F* except for the determination of the randomizations Ny , - -+ , Na—1 .

The proof of this is more elaborate. Nevertheless, since the techniques are
similar to the preceding, we omit the details.

As mentioned previously, there exist inadmissible degenerate monotone
procedures. An example, for which the author is indebted to the referee, can be
constructed as follows: Let n = 3, and consider the strategy (z}, 23 ; A}, A9
defined by 23 = 23 = 2%, A] = 1, A = 0. If u(2") > 0, then the strategy

% % * *
(xl ,x2 ;xl ,k2)

with 2F = 2F = 2%, \f = 0, \f = 1 constitutes an improvement.

The following theorem describes some of the properties of degenerate mono-
tone procedures.

TrEOREM la. Let ¢° be a degenerate monotone procedure for which

0 (] 0 0 0
Ty < oo < Ty =Zig1 = 00 = Tigpr < 0 < Ty

C(1) If pzi,) = 0, ¢ is admissible.

(2) If u(al,) > 0 and o* satisfies p(w, ¢*) < p(w, ) for all w, then o* is a de-
generale monotone procedure with the following three properties:

(a) ¥ = a?, i=1---,n—1;

N =Nifu@) >0, i=1,-,6o—lLis+k+1,-,n—1;

(€) gt — My) + 20Gpaam1 — Mygam) + <o+ + EQZ, — A%) = 0.
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Proor. (1) and (2a) are trivial consequences of Lemma 3a.
An easy computation verifies (cf. Theorem 1 of [2]) that

n—1

< plw, @) — plw, %) = 2 [Liw) — Lipi(w)lp(?, wini,

7=1

where
= ; O =A@, K= {jlj <420 — 2.

Tivaluation of the last expression at w; , -+ , wiy ) @iggtr1, =+, o, @e € (Wr_y S wil,
1=1, w,% + L+ 1, -, n, produces the system of equations

j—1 )
c{ E} p@i i — 2 p(xl, wni — Z p(x“w])m}

i=j T=19+k+

- n—1
{Z 'D(x w])ﬂz + Z P(x(: ’ wi)"lg - Z p(x'& ) w])"lz} ;

i=1¢+H i=j
J=%+k+1,---,n,

i = n =1, = Li+k+1 - ,n—1,
and
” Loy ¢ 0 0 *
Niy = Z Ny = ()\i0+k - )\:!‘o-l-/c) + 2(>\i0+k—1 - >\i0+k—1) + + k(x‘to - to)
v=1y

The conditions of Lemma 2 are satisfied so
ni =0, i=1,-,d,0+k+1, - ,n—1.

This imphes properties (2b) and (2¢).

The statement of the analogous results when there are several groups of de-
generate intervals is left to the reader.

It is worthwhile giving an explicit statement to the following general result.

CororLARY 1. If the measure p is atomless, all monotone procedures are admis-
sible.

3. Some extensions. The results of the previous section concerning admissi-
bility for multi-action problems extend immediately to a more general type of
loss function. as indicated in the introduction. Specifically, we suppose that

(D Ljw) =¢,; for w in 8;;

that 1s, the loss is constant when taking action ¢ instead of action j, which was
preferred. Aside from the usual requirement that the L;(w) give rise to a mono-
tone preference pattern, the further important assumption is that

|L,~(w) — LH_]((.O)[ = b.;j = 0 for win S,' , bik > O, k = i,

such that for¢ = 1,2, .., n — 1,
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bi; bix

v
=

€8y

biv1,i iy

whenever 1 £ j <zandi+ 1=k = n.

Again we asume that the density p(x, ») possesses a strict monotone likelihood
ratio.

The place of the monotone procedures for these loss functions is summarized
in the following propositions.

LemMa 6. If the loss functions salisfy conditions (1) and (I1), any non-degenerate
monotone procedure 18 Bayes against a discrete a priort distribution F* which con-
centrates all its probability at n points; each interval (wiy, wi], ¢ = 1, ---, m,
contains a mass-point of F*, but the location of the mass-point in the interval is ar-
bitrary. The non-degenerate monotone proce%lure 18 uniquely Bayes with respect to

F* except for the randomizations AL, e, A
The proof of this lemma is completely analogous to that of Lemma 3. We
sketch the argument. Selecting » points w; ,j = 1, -+ , n, where w; € (wj—y , wy,

we seek to determine a discrete distribution F*(w) with weights located exclu-
sively at ; such that
@ [ 1@ = Lolple, 0 @) = {3 pla, wdbsts = 32 ple, bty
vanishes only ata} , < = 1, - -+, n — 1, the critical values describing the specified
non-degenerate monotone procedure. The system of equations (7) is exactly of
the form of (*) of Sec. 1 with
a = pxi, w;j)bij .

The hypotheses (I) and (II) and the fact that p(z, w) possesses a strict monotone
likelihood ratio immediately imply that the conditions of Lemma 1 are fulfilled.
Consequently, we may conclude that an F*(w) with the desired properties exists.
From here on the proof is a paraphrase of that of Lemma 3.

Paralleling the method of obtaining Theorem 1 from Lemma 3, we deduce
from Lemma, 6:

TuroreM 2. If the loss functions satisfy conditions (1) and (II), all non-de-
generalc monotone procedures are admissible.

The arguments of Lemma 3a dealing with degenerate monotone procedures
do not extend directly to this more general loss function. In fact, for this case
the conditions of IT will be strengthened so that b;; > 0, all , 7, and

bif b'il.:

(1) i = =0

bivii bisie

is satisfied for every choice of 1 < j < k& = n. Under this more stringent condi-
tion it is now possible to show that every monotone degenerate procedure is
Bayes with respect to a finite discrete distribution F. The method of proof is an
extension of the ideas of Lemma 5. For example, let us consider the case where
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a monotone strategy ¢ is specified with critical numbers (21, %2, -+, Zu-1)
such that x;, = ;41 and all other z;’s are distinct. We must distinguish two
cases: (a) If Bj} = O for all values of j and % satisfying j < k, then it is possible
to find a distribution F(w) whose full mass concentrates at » — 1 values w;
where w; belongs to (wj—; , wj), for all j # 7, against which ¢ is Bayes. The values
w; may be selected arbitrarily provided only that they belong to the appropriate
intervals. This assertion can be verified along the lines of Lemmas 5 and 3a. (b)
If for some jo < ko, B¢, > 0, then it follows from (II’) that for all j < jq
and k > ko also B > 0. By selecting arbitrarily n values of w; subject only to
the condition that w; belongs (wy_; , wj], an n-point distribution F(w) with weights
at w; may be constructed so that ¢ is Bayes with respect to F(w). The proof of
this statement, as in Lemma 3, reduces to an application of Lemma, 1.

We summarize the conclusions of this analysis in the statement of our next
theorem.

TurOREM 2a. If the loss functions satisfy properties (I) and (II') with b;; > 0
for all 7, j, then any degenerate monotone procedure @ is Bayes. ¢° is uniquely Bayes
except for the randomizations A, e A atal, -, g so that if & s inad-
missible the decision procedure o* which improves on o° differs from ¢ only in the
randomizations at x3 , -+ , Ta_y . )

COROLLARY 2. If u s atomless, all monotone procedures are admissible.

4. Estimation with absolute error loss function. In the previous section it was
mentioned that the absolute error loss function L(a, w) = ¢| @ — | is the limit-
ing case of the discrete absolute error loss function in an n-action problem. This
fact will be utilized in this section to prove that all bounded, continuous, mono-
tone estimates in the estimation problem for absolute error loss functions are
admissible.

Since the loss function L(a, w) = ¢ | @ — w| is a convex function of a for each
w, it is only necessary to consider non-randomized estimates, i.e., single-valued
functions a(x) which map the space X into the space Q. It was shown in (2]
that the class of monotone estimates is essentially complete when the loss is
absolute error. (An estimate is monotone if z; < z; implies a(x;) < a(z:).) This
result will be strengthened by showing that all bounded, continuous, monotone
estimates are in addition admissible. It would appear that this is about as general
a result for admissibility as can be obtained since it is not true in general that
arbitrary unbounded monotone estimates are admissible. Consider the problem
of estimating the parameter w when x is normally distributed with mean w and
variance 1. The estimate a(x) = = + k for constant & £ 0 is a monotone esti-
mate, but it is strictly dominated by the estimate ao(x) = . The investigation
of the admissibility of certain natural unbounded monotone estimates on ahsolute
error loss functions is deferred to a subsequent publication.

TuroreM 3. All bounded, continuous, monotone estimates are admissible.

ProoF. Let a¢(x) be a monotone and continuous estimate for which
lim.,_wao(z) = —b; and lim,.«a(x) = by, where —b; < by and by, b < o=,
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It will be shown that ao is the unique Bayes estimate with respect to some a priori
distribution F* and therefore is admissible. The problem is first reduced to the
finite action case with loss functions corresponding to discrete absolute error
functions.

To this end, let the Q-space, the real line, be divided into 2N + 3 half-open

intervals (wi— , wi], 7 = 1,2, ---, 2N + 3, where
N
wy = — >,
wN = —b — by + b,
! ' 2N’

b1 + bs

d=—m+a—m2N,

i=2--,2N +2,

¥
wony3 = 0,

and consider the (2N + 3)-action problem which is defined by

b+ b, . .
L;Y(w) = —1?N—2 1 — 7l for w & (wi_1, wi],
i,7 =1, -+, 2N + 3. Define the discrete decision procedure as () as follows:

(2 < -—N
i+ 1
N

i=0,1,---,2N* — 1

. —N i < —_
4; A+T’ fz< —-N+
|

| 2
ab (x) =)] where |ao (—N + ].%) +b — (4; —2) b 2-|7-\,er|
! i b
‘ = mi N+ oy bt b
i B 2§?}S_l‘.’[}~l+2 ’a°< N+ N) +b—@G—2) SN

N 4+2 w2z N

a5 should be interpreted as a monotone decision procedure which for each value
of x specifies that the action af (z) should be taken. Since af is monotone and
never involves taking actions 1 or 2N + 3, by Lemma 3a ao is Bayes against a
discrete probability distribution Fy whose spectrum is contained in the interval
(—=by — (by + by)/2N, b.). Since the spectrum of Fy is contained in a finite in-
terval and as N — « each interval becomes a subset of the previous interval,

the sequence {F,} has a subsequence {F,;} such that F., -——L~—> F*, where F*

is a distribution function. Without loss of generality, assume Fy —£—> F* as
N — w. It is also clear that as N — o Lg¥ ;)(w) — | ao(z) — «| uniformly for
w € [—b , bo). Therefore, since p(x, w) is continuous in w for each x, as N — o,

/_. : Loy »(@)p(, 0) dFy(w) — f_ : [a(z) — «|p(r, @) dF¥(w).
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Consider any other estimate a(x) whose range is contained in the interval
[—=D1, bs]. Without loss of generality a(z) is monotone and for simplicity assume
a(x) is continuous. At a point of discontinuity a(z) can be approximated point-
wise by a continuous estimate. A limit argument gives the gencral case. Define
a” () amalogously to aj (x). Since a; is Bayes against Fy ,

/ L:vﬁr(x)(w)p(;v, w) dl y(w) £ f LZN(Z)(w)p(:I:, w) dFy(w).
As N — =, Iive(w) — la(z) — o| uniformly so

[ 1a@ — ol p@ o) dr+@ = [ |a@ — o] p, o) drHw).

Thus, ao is Bayes against I'* when the class of possible estimates is restricted to
those whose ranges are contained in [—b; , by). But any estimate b(z) which as-
sumes values outside the interval [—by , bs] can obviously be improved upon by
an cstimate whose range is contained in |—b;, bs] since the spectrum of F* is
contained in [—0; , bs]. Therefore, a, is Bayes against I'*. Tt is also clear that the
spectrum of I'* comes arbitrarily close to the extreme values —b; and b, . This
fact is utilized below in the discussion of admissibility.

To prove admissibility it must be shown that a, is uniquely Bayes against F*,
TFor a fixed 2 in the positive sample space

(™ a) = [_ o= o] p ) dF*w)

is a convex function of a. If it can be shown that p(F*, a) is strictly convex over
[—b1, by], then the minimum will be unique. Fora, , a2 ¢ [—by, b, a1 < a2 . and
0<\<1,

p(F*, na1 + (1 — Nag) = f_w“\((h —w) + (1 = N — w) | p, w) dF*(w).
e — @) + (L = N(az — )] ENlar — o + (1 —N)|a — wl with strict
inequality for a¢; < w < @, . Thus,

P(F*) }\0/1 + (1 - )\)(12) < )‘p(F*, al) + (1 - )‘)p(lﬂ*’ a2)

will follow if F* assigns positive measure to every open set in the inter-
val [ — b1, b.]. Henee, it suffices to show that F* has positive measure throughout
the whole interval. Suppose the contrary; there exist constants, b; and b4 , such
that —b; < bs < by < beand 0 < F*(bs) = F*(b; + 0) < 1. For a & [bs, b4,

o(F*, a) = '/:: (@ — w)p(x, w) dIF*(w) + ‘[: (w — a)p(x, w) dI'*(w)

0

bs
a [f (@, w) dF*(w) — /b p(x, w) dl"*(w)] + K(z, w),
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where K(z, w) is a function of z and « independent of a. If the expression in
brackets is positive, miny, <a<s,0(F*, @) = p(F¥, bs), and if the expression is nega-
tive, miny, <a<s,0(F*, @) = p(F*, bs). Thus, ao(x) can assume values between b;
and bs only if the expression in brackets is zero. For each z in the non-degenerate
interval {x:b; < ao(x) < bs}, we must have

b3 © ®©
[ ) @) — [ a0 di*@) = [ b, o) dv@) =0,

where

[1 o=

hMw) = .

l—] w > by
But since h(w) changes sign exactly once, [Zoh(w)p(z, w) dF*(w) has at most one
zero by Theorem 3 of [3] and cannot equal zero for an interval of 2’s. Thus, F*
must assign measure to every open interval in [—by , b,] and the theorem is proved
fOl‘ —bl < bz .

It is a trivial verification that all estimates of the form a(z) = ¢, ¢ constant,
are admissible. (In fact, it is the unique Bayes strategy with respect to the dis-
tribution concentrating all its probability at the point w = ¢.)

This completes the proof of the theorem.

5. n-action problem for a special loss function. Consider the n-action problem

which is defined by the n 4 1 values Wo, Wy, wa(wp = — o and wy = 4»)
and the following set of loss functions:
¥i(w) w £ wia
Li(w) = 0 w e (0o, wi]

c>0 0>
where ¥;(w) is a monotone decreasing function of w, 7 = 1, ---, n, and where
Yi(w) — ¥i(w) > 0 for ¢ > j and w in their common domain of definition. (It
will be assumed that ¥:(w) is sufficiently smooth to justify differentiation inside
the integral sign of the a posteriori risk function.) The loss for an action ¢ is
constant if the corresponding w-interval is underestimated and increases as the
magnitude of the error increases if the w-interval is overestimated. Such a
family of loss functions is suggested by the following problem. It is desired to
determine how much material will be required to construct a bridge across a
certain river. If insufficient material is ordered, the bridge will not be completed
and the loss is the same regardless of how small or large the discrepancy is. On
the other hand, if there is an overabundance of material, the loss is proportional
to the amount of excess, wasted material.
The assumptions concerning the distribution functions

P@,w) = [ w) dud,

remain the same as in Sec. 2.
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The main result of this investigation is embodied in Theorem 4 given below.
The proof is quite similar to the proof of Theorem 1.

LeMMma 7. A monotone procedure (non-degenerate or degenerate) is Bayes with
respect to a discrete a priori distribution F* which concentrates its probability at n
poinis; each interval (wi—y, wil, 1 = 1, -+, n, contains a mass-point of F*, but
the location of the mass-point in the interval is arbitrary. The non-degenerate mono-
t%ne proced:ne 1s uniquely Bayes with respect of F* except for the randomizations
}\1) tte )>\n—l-

Proor. Consider the difference of the a posteriori risks for actions ¢ 4 1 and ¢:

0@+ 1) — 7,00 = f_: [Lip(w) — Li(w)lp(z, w) dF (),

where F is some a priori distribution. When 7,(z + 1) — 7.(Z) < 0, action z + 1
is preferred to action %, and when 7,(z + 1) — 7.(¢) > 0, action ¢ is preferred
to action ¢ + 1. Since L;11(w) — Li(w) changes sign once, from positive to nega-
tive as o increases, by Theorem 3 of [3] 7.(¢ + 1) — 7.(¢) has at most one zero
counting multiplicities, and if it changes sign once as x increases, it changes
from positive to negative. Thus, there exists an z’ such that for * < 2" action ¢
is preferred to ¢ 4+ 1 and for z > z’ action ¢ + 1 is preferred to action 7.

A monotone decision procedure characterized by (@}, -+, 20y AY, o, A%y
will thus be Bayes against F if the system of equations

®) [: [Lipa(w) — Li(w)]p(xg, w) dF(w) = 0,

i=1,---,n — 1, is satisfied. Let w; be an arbitrary point in the interval
(wi_y , wi], i1=1,---,n.
We assert that weights f;, f; > 0, Dif; = 1, can be determined such that if
F* is the distribution which assigns probability f; to the point w;, then
(21, - - ,:c?.il;k‘i, oy Aen)

is Bayes against F*. This can be seen as follows. The system of equations (8)
becomes
i+l

) ’;1 [Lii(w) — Liw)lp(t, 0)f; = 0,

i=1,---,n— 1. The (n — 1) X n coefficient matrix A = (a.;) of the system
(9) has the form:

(1) a;; >0 for j<4, di=1--,n—1,

(2) @iiz1 <0 for ¢=1,---,n—1,

3)a;=0 for j>i+1, di=1--,n—1
But any such system of equations has a solution (fy, - - -, fu) such that f; > 0,
>fi = 1. Consider the first equation,
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aufi — |aw|fe = 0.

Choose any positive value whatsoever for f; , and solve for f, . Clearly, f» > O.
Substitute these values of fi and f; into

anfy + anfo — |ax|fs =0

and solve for f;. Clearly, f; > 0, and so on. The solution (f;, ‘--, f.) can be
normalized so that), f; = 1. Thus, (@), «+-, T%1 3 A, ---, A%y) is Bayes
against F*,

The uniqueness except for A, -+, Aa_; is established by the fact that the
zeros of

[ ) = Lilp, o) ar*),

1=1,-.--,n — 1, are unique.

TuEOREM 4. All monotone procedures are admissible.

Since the proof of this theorem duplicates that of Theorem 1, it will be omitted.
Lemma 8 below is the analog of Lemma 4. It strengthens slightly the results of
Theorem 4.

LemMa 8. If o* and ¢ are two monotone procedures and p(w, ¢*) = p(w, ¢°),
then af = a23,i=1,---,n — 1, and A¥ = A} for all ¢ for which u(zd) > 0.

Proor. Since ¢* and ¢° are uniquely Bayes except for randomizations,
plw, ¢*) = p(w, @) trivially implies that z¥ = 23,6 =1, --- ,n — 1.

As in Lemma 4,

p(w, @) — p(w, ¢*)
= [ pe  {E 1 - Lal[ X 66 - 5o ] duto

and

n—1

0= Z [Li(w) — Li+1(w)]p(x2 ’ w)n;

=1
where

ni = 2/:4 ()\2 - )\?)M(Z‘g), K; = {J|J =<4, -'1«'2 = l?}

When this expression is evaluated at w; , - - - , w, , the system of equations 94 = 0
is produced where 5 = (m1, -+, 7a—1) and 4 = (a;;) is an (n — 1) X n matrix
satisfying ‘

(1) a;;j <0 for j =74, i=1 -, n—1,

(2) a,',,‘+1>0, i=l,~-,n—-1,

3) a;;=0 for >4+ 1, i=1---,n—1,

But the only solution to such a system of equations is = (0, 0, ---, 0). The
last equation @._1,,7,—1 = 0 implies 5,-1 = 0. If n._; = 0 is substituted into the
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next to last equation, the resulting equation @,—1,n—1-0 + @u—g,n17.—2 = 0 implies
M—2 = 0,and soon. But 9; = 0,¢ = 1, --- , n — 1 implies the stated result.

6. Estimation with the special loss function of Section b. If w ¢ Q is the true
parameter point and w is estimated to be a, then the loss is L(w, @) where

c>0 a < w

L(w, a) ={
v — w) = w

where y/(£) is a monotone increasing function of ¢ with ¢(0) = 0.

The method of proof of Theorem 5 below closely parallels that of the first part
of Theorem 3. Unlike the absolute error loss function, this loss function does not
admit an easy proof of the uniqueness of the Bayes estimate which is required
for this type of admissibility proof. In fact, the indications are that uniqueness
fails to hold, but no proof of the inadmissibility of a bounded, continuous, mono-
tone estimate has been obtained as yet. However, a weaker positive result in
this direction is the following:

TueorReEM 5. All bounded, continuous, monotone estimates are Bayes estimates.

The proof is omitted.

Finally, we remark that the same kind of results can be obtained for the case
where the loss functions are such that the error is constant for overestimation
and arbitrarily monotonically increasing for underestimation.

7. Minimax results for the discrete absolute error loss function. For the n-
action problem with discrete absolute error loss function it is not true, in general,
that min, maxr p(¥, ¢) = maxy min, p(¥, ¢), although inf, supr p(F, ¢) =
supr inf, p(F, ¢) provided L;(w) = 0 and the value of the game is allowed to be
infinite [5]. Most often the game fails to have the property that the F player has
a minimax strategy. The difficulties stem from two sources. The space {F}
of all probability distributions on the real line is not compact, and the loss func-
tions are discontinuous at w} , 7 = 1, --- , n — 1. However, the following result
is true. Suppose Q consists of a finite number of points {w;, ---, wy} Where
nSNandw < wiqa,2=1,--- ,N — 1,and L(w; ,j) = ¢| 4 — j| for w; £ Sy.
For this game structure it is very easy to establish (cf. [3]) that

max min p(F, ¢) = min max p(F, o),
F ¢ @ F

where {F} is the space of all discrete probability distributions defined on Q.
It will be assumed that all the previous assumptions of Sec. 2 apply equally
well here.
~ Since the class of monotone procedures is essentially complete, there exists at
least one monotone minimax strategy. The character of the monotone strategy
has been well-defined, but nothing has been said as yet about the structure of
nature’s minimax strategies. The following lemmas have this as their aim.
LeMMA 9. Let v be the value of the game, and let ¢° be a monotone minimaz strategy.
If T,y = {wl|plw, ¢") = v}, then T,, contains poinis in each region
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S:iC Q¢ =1, -, n, for which " has a corresponding non-degenerate interval
in X in which action ¢ is taken.

Proovr. Suppose that for some ¢, 7'y, n S; = 6 (the empty set). Then a mini-
max strategy F° for nature will not concentrate any probability in the region S; .
Since for all , p(F°, ¢) = p(F°, &) = v, ¢" is Bayes with respect to F°. By Lemma
5, ¢ cannot have a non-degenerate interval for action .

LemMa 10. If the monotone minimaz strategy ¢ snvolves k non-degenerate in-
tervals, there exists a minimax strategy F° for nature whose spectrum consists of k
points, each point belonging to a region S; for which the action © interval in X s
non-degenerate.

Proor. By Lemma 9, in each region S; for which action ¢ has a non-degenerate
interval there exists at least one w ¢ £ such that p(w, ¢°) = 9. Choose one such
point from each of the eligible S;. By Lemma 3a, it is possible to construct a
distribution F° concentrating its probability at these points with respect to
which ¢° is Bayes. Since for all ¢, p(F°, ©) = p(F’, &) = v, F* is minimax.

When n = 3 and p(z, ) is Pélya-type 3, with continuous second derivatives,
there is a constructive method of obtaining the monotone minimax strategy.
Define

A1) = ¢ f " o, @) du(@) + 2 [ " (@, @) dul) + ol — A)p(ar, Wule)
+ [ede + 2c(1 — N)Ip(ze, W),
As(w) = ¢ [: p(z, w) du(@) + ¢ j:o p(z, &) du(@) + M p(@1, W)

+ ¢l = M)p(2s, wp(z2),
As(w) = 2¢ f_: p(x, w) du(x) + ¢ /:2 p(x, ) du(z)

+ [2eh + c(1 — M)Ip(a: , wu(z) + oA p(xs , w)ulzs).

Let ¢ be the monotone procedure characterized by (21, 2 ; A1, A2). For w ¢ S,
olw,0) = Aj(w);forwe S, , p(w, 9) = As(w);and forw € S:, p(w, 9) = As(e). Let

min {w,‘ l w; € Sz}q

wi = max {w;|w; e S}, i

w;;, = max {w; | w; € Se}, w;, = min {w; | w; & Ss}.

i3
Since p(z, w) is Pélya-type 3, A;(w) is a monotone increasing function of w, A3(w)
is « ruonotone decreasing function of w, and A:(w) — « as a function of w has at

most two changes of sign (for any «). Thus
max p(w, ¢) = plw;, ,0) = A1(w;,)

w ;€8]

max p(w, ¢) = max {p(w;, , ), p(wi; , ©)}

w; €Sy

= max {As(w;,), A2(w;;)}
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and
max p(w, ¢) = p(wi, ,9) = As(wi,).

wie8;
To obtain the monotone minimax strategy choose (z;, 22 ; A1, Ae) such that
(10) plwi , @) = plwiy, ©) = plwi,, ) = plwis , @),

or, if this is impossible, choose (71, 22 ; A1, A2) such that

(11) p(wi , ) = plwss, 0) = plwiy, ) Z p(wiy , @).

It is clear that the monotone strategy (z1, 3 ; A1, A2) where 2;, 22, A, A; are
defined by (10) or (11) is a minimax strategy.

Either the system (10) or the system (11) has a solution since the statistician
has a minimax strategy and this strategy must involve three non-degenerate
intervals. The latter statement is proved as follows:

Lemma 11. v < c.

Proor. Consider the strategy ¢ = (¢1, ¢2, ¢3) where o;(z) = 3,7 = 1, 2, 3.
p(w, ¢) = c for all w. Therefore, v < c. But there exists a monotone strategy ¢’
which improves uniformly on ¢ by Theorem 1 of [2]. Therefore, v < c.

Now consider the various cases for which there are at most two non-degenerate
intervals.

Casel. 22 = ©: plw,¢) 2 ¢ for we S
Case 2. x; = 2, : ole,0) = ¢ for weS,
Case3. 7, = —»: plw,0) = ¢ for weS

Therefore, a minimax strategy for nature must involve three non-degenerate
intervals.
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