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and von Mises tests. A comparison of the power functions of these tests would
be of great interest. Almost nothing is known of the small-sample power of any
of these tests. The large-sample power of the chi-square test is known. It is
the author’s conjecture that the limiting joint distribution of @(n) and R.(1; 1)
is bivariate normal under the alternatives as well as under the hypothesis. If
this conjecture could be proved, the asymptotic power of the proposed test
would be known.
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The general consideration of non-parametric tolerance limits had its origin
with Wilks [10]. Wilks showed that for continuous populations, the distribution
of P, the proportion of the population between two order statistics from a ran-
dom sample, was independent of the population sampled, and was in fact a fune-
tion only of the particular order statistics chosen. Wald [9] and Tukey [8] ex-
tended the method to multivariate populations, Tukey being responsible for the
term ‘‘statistically equivalent block.” Their work was extended further by Fra-
ser (2], [3]. Murphy [4] presented graphs of minimum probable coverage by
sample blocks determined by order statistics of a sample from a population with
a continuous but unknown c.d.f. This note extends the results of Murphy, and
tabularizes the results in a manner which eliminates or minimizes interpolation,
particularly with respect to m, in a large number of cases. The form of Table I
parallels the tables of Eisenhart, Hastay and Wallis [1] “Tolerance Factors for
Normal Distributions.”

Let P represent the proportion of the population between the r* smallest
and the st largest value in a random sample of n from a population having a
continuous but unknown distribution function. Table I gives the largest value
of m = r 4+ s such that we have confidence of at least that 100 P percent of
the population lies between the r** smallest and s*™ largest in the sample. Note,
that we may choose any 7, s = 0 such that r 4+ s = m. We must, of course,
decide upon the values of r and s independently of the observations in
the sample. We obtain one-sided confidence intervals when we use r = 0 or
s = 0 for a given m. The values of m are the largest such that

Y é Il_p(m,n —_ rh + 1)
where I is the incompléte Beta function tabulated in [5] and [7].
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TABLE I
Values of m = r + s such that we may assert with confidence at leasty that 100 P
percent of a population lies between the rth smallest and the sth largest of a
random sample of n from that population (continuous distribution function

assumed)
P

” v = 0.50 v = 0.75 v = 0.90 v = 095 v = 0.99

.50 1.75 (.90 | .95 .99| .50 | .75 | .90 | .95 [.99( .50 | .75 | .90 | .95 |.99| .50 | .75 | .90 | .95 |.99] .50 | .75 [ .90 |.95].99
50 |25 |12 5| 2/0|22{10{ 3 1(—1{20]| 9| 2 1—|19| 8| 2|—|—|16] 6| 1 |— [—
55 |28 |14 | 5| 3(0|25|12| 4| 2|—|28|10| 3| 1|—|a1| 9| 2|—=I—|10] 7| 1]~]|-
60 |30 15| 6| 30|27 13| 4| 2|—|25|11| 3| 1|—|2af0] 2| 1|—|21| 8] 11— |—
65 133 )|16| 6| 3|03 (14| 5| 2|— |27 |12 4| 1|—|26|11]| 3| 1|— |28 9| 2[|— |—
70 |35 17| 7| 3|1{32|15| 5| 2|—|30|13| 4| 1|—[28|12| 3| 1|—|25]10] 2]—|—
7538 |19| 7| 4(1|35|16] 6] 2/—[32|14| 4| 1|—|30|18] 3] 1|—|27]10] 2| |—
80 |40 (20| 8| 41|87 17| 6] 3|—|34|15] 5| 2|—[33|14] a| 1|—|30{11]| 2|~ |~
85 |43 |21| 8| 4|1(39 19| 7| 8|— |37 |16 5| 2|—|35f156] 4| 1|—|32]|12] 3|— |~
90 (45|22 | 9| 4|1|42|20| 7| 3|—|30|17| 5| 2| |37 |16] 5| 1|—|3¢4]13) 3|1]|—
95 |48 (24| 9| 51|44 (21| 7| 3|— 41|18 6| 2|— (39|17 5| 2|— |36 14 3|1 |—
100 150 (25 |10 | 5|1 |47 ({22) 8| 3|— |44 |20]| 6| 2|— |42|18| 5| 2|— (388 |156]| 4|1 |—
10 (55 |27 |11 | 5|1 |51 |24 9| 4|—|48[22| 7| 3|—|46]2 | 6| 2|—|a3{17| 4|1 ]—
120 |60 (30 |12 | 6|1 (66|27 10| 4|— (53 |24| 8| 3|— |51 |22 | 7| 2|— |av|19| 5]1|—
130 {6532 |13 | 6|1(61 |20 |11| 5| |58[26| 9| 3|—|56|25]| 8| 3|— 52|21 6]2|—
140 |70 {35 |14 | 7|1 |66 |31 |12 | 5|1(62 28[10| 4|— 60|27 | 8] 3|—|56[23] 62|
160 |75 (87 |15 | 71|71 |34 |12 | 61|67 |31]10| 4 |— |65|20| 0| 3|—|61]|26| 72|
170 |85 (42 |17 | 8|2 (81|39 14| 7|1 |77 |35 |12| 5|— |74 |33 |11 | a|—|70|30] 9|3 |-
200 {100 |50 {20 |10 |2 |95 (46 |17 | 8 |1 (91|42 |15| 6|— |88 |40 |13 | 5 |— 84|36 |11 |4 |—
300 (150 | 75 (30 | 15 |3 [144 [ 70 |26 | 12 {2 (139 | 65 |23 [ 10 | 1 {136 |63 |22 | o |1 [130 |68 |10 |7 |—
400 200 (100 | 40 | 20 | 4 (193 (94 (36 |17 | 3 |187 |89 |32 |15 |2 (184 | 86 (30 | 13 |1 |177 | 80 | 27 |11 |—
500 250 |125 | 50 | 25 | 5 (242 (118 | 45 | 22 | 3 |236 [113 |41 [ 19 | 2 (232 (109 [ 39 | 17 | 2 |224 |103 | 35 |14 | 1
600 (300 [150 | 60 | 30 | 6 (292 {143 | 55 | 26 | 4 (284 136 | 51 | 23 | 3 (280 /133 | 48 | 21 [ 2 |272 |126 | 44 |18 | 1
700 (350 {175 | 70 | 35 | 7 (341 |167 | 65 | 31 | 5 (333 (160 | 60 | 28 | 4 328 156 | 57 | 26 | 3 {319 [149 | 52 |22 | 2
800 (400 (200 | 80 | 40 | 8 [390 {192 | 74 | 36 | 6 (382 (184 | 69 | 32 | 5 377 {180 | 66 | 30 | 4 (367 |172 | 61 |26 | 2
900 450 (225 | 90 | 45 | 9 (440 [216 | 84 | 41 | 7 |431 |208 | 79 | 37 | 5 |425 204 | 75 | 35 | 4 |415 |105 | 70 |30 | 3
1000 (500 (250 100 | 50 {10 |489 241 | 94 | 45 | 8 |480 [233 | 88 | 41 | 6 |474 |228 | 85 | 39 | 5 |463 |219 | 79 |35 | 3

TABLE II

Confidence v with which we may assert that 100 P percent of the population lies
between the largest and smallest of a random sample of n from that population
(continuous distribution assumed)

# |P=.50|P=.5|P=.90|P=.95|P=.99 n |P=.5|P=.90|P=.95|P=.99
3 .50 .16 .03 .01 .00 17 .95 .52 .21 .01
4 .69 .26 .05 .01 .00 18 .96 .55 .28 .01
5 .81 .37 .08 .02 .00 19 .97 .58 .2 .02
6 .89 47 A1 .03 .00 20 .98 .61 .26 .02
7 .94 .56 .15 .04 .00 25 .99 .13 .36 .03
8 .96 .63 .19 .06 .00 30 1.00— .82 .45 .04
9 .98 .70 .23 .07 .00 40 .92 .60 .08

10 .99 .76 .26 .09 .00 50 .97 72 .09

1 .99 .80 .30 .10 .01 60 .99 .81 .12

12 1.00— .84 .34 .12 .01 70 .99 .87 .16

13 .87 .38 .14 .01 80 1.00— .01 .19

14 .90 .42 .15 .01 90 .94 .23

15 .92 .45 17 .01 100 .96 .26

.94 49 | .19 .01
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Table II gives the confidence v that 100 P percent of the population lies
between the largest and smallest of a random sample of n.

In the case where we are dealing with a multivariate population, we take m
to be the number of blocks (See Tukey [8]) excluded from the tolerance region.
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NONPARAMETRIC ESTIMATION OF SAMPLE PERCENTAGE
POINT STANDARD DEVIATION
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1. Summary. The available data consists of a random sample z(1) < --- <
z(n) from a reasonably well-behaved continuous statistical population. The
problem is to estimate the standard deviation of a specified z(r) that is not in
the tails of the sample. The estimates examined are of the form

alz(r + 1) — z(r — 17)]

and the explicit problem consists of determining suitable values for a and 1.
The solution

a= @0+ D0/0+ DI — /(e + D6 = (o + DY

Received November 15, 1957.



