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ON THE DISTRIBUTION OF 2 X 2 RANDOM NORMAL
DETERMINANTS!

By W. L. NicHOLSON?

Princeton University

1. Summary. The c.d.f. of a 2 X 2 random determinant with mutually in-
dependent normally distributed entries is derived as an infinite series. Error
functions that bound the tail of this series facilitate numerical calculation. Con-
ditions are imposed on four variable quadratic forms for this distribution to
apply. A normal approximation to the distribution is suggested.

2. Introduction. Let X;, X,, X; and X, be mutually independent random
variables, each normally distributed, with means u;, w2, w3 and u,, and com-
mon variance o". Let D be the random determinant,

X1 X
X: X,
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D= =X1 X, — X2 X;.
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If all the u; vanish the p.d.f. of D/o* is easily calculated to be the Laplace dis-
tribution [5],

fexp {—3|zl}.

When the p; are not zero the distribution is, in general, skewed and not expressible
in a simple closed form.

Craig [1] derived the p.d.f. of the product of two normal variables (not neces-
sarily independent) as an infinite series of Bessel functions. Theoretically, his
result plus the convolution formula for density functions determines the p.d.f.
of D. However, the form of such an answer is not particularly adapted to nu-
merical work. Most methods for handling the distribution problems connected
with normal variable quadratic forms are not applicable here. The reasons for
this are, first, that D is not a definite form, and, second, that it cannot be repre-
sented as a linear combination of central Chi-Square variables. The former
obstacle can be overcome to a measured degree by several different procedures;
e.g., Pitman’s and Robbins’ method of mixtures [6] and Gurland’s Laguerrian
expansions [3]. The latter causes more difficulty. There does not seem to be an
adequate technique available to handle linear combinations of non-central Chi-
Square variables.

Our approach is basically a brute force method consisting of straightforward
inversion of the characteristic function of D. The independence and homoscedas-
ticity assumptions cannot be relaxed without greatly complicating this inversion
problem. In the process a single integration leads to the c.d.f. of D. Percentage
points are immediately available. without resorting to quadratures.

In the sequel o* = 1. There is no loss of generality in this simplification, since
o appears as a scale parameter in the distribution of D; i.e., we derive the dis-
tribution of the normalized variable D/q".

The characteristic function of D is easily calculated to be

oy 21 —AF + 26A¢
(2.1) ¢o(t) = E(e™°) = (1 + £) eXp{ 2(1 + ©) }
where
A=m+m+u+ps, O0SA<4o,
(2'2) M1 p2 A A
- - _ -2 =As2.
A o pa | BT B2, g =A=3

Thus, we see that the distribution of D depends on the means only in the form
A and A. Expand log ¢»(¢) in powers of ¢ to get the semi-invariants of D as

a2k=(2k)!(%—%> k=12 .-+,

a21¢+1=(2k+1)!A ]C=O,l,2,"'.
The mean and variance of D are

(2.4) up =1 = A, o»=a = A+ 2.

(2.3)
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The coefficients of skewness and excess are

S
" At
(2.5)
_a_ 120 41)
‘Yz—a: _—(A+2)2 .

The distribution is skewed if and only if A ¢ 0. From (2.5) this skewness is never

great. In fact |y < 24/6/3 and v1 = 0(A™®) for large A. The excess v is mono--
tone decreasing in A with a maximum value ‘of three for A = 0. Also, v = 0(A)

for large A. Thus, if at least one u; is large the distribution is almost symmetric

and of approximately the same peakedness as that of the normal. In Section 4

we show that D (appropriately normalized) is approximately normally dis-

tributed for large A.

3. Exact Distribution. The functional form of the characteristic function (2.1)
indicates that the p.d.f., fa,a, and the c.d.f., Fx,a, of D satisfy for all real =

(3.1) faa@) = fa—a(—2), Faa(x) =1 — Fas_a(—2).

Hence we need only consider the distribution of D for negative argument. In
the remainder of the paper z always satisfies x < 0. The c.d.f. of D is not ex-
pressible in a simple closed form (unless A = A/2.). Introduction of an appro-
priate error term does make it possible to represent it as a damped polynomial
in |z | with coefficients that are elementary functions of A and A. Let R be any
set of non-negative integers. The c.d.f. of D can be written as (see Sec. 5)

3.2) Fas@ = X 3 hr, 0g(r,¢| 8,4/2, | z]) + L,

reR t=0
é r
2

O§L<%Ze_m<

where L satisfies

, Az0,
(33) reR r!
| (A+ lAI)’
2
—-A/2
OSL<2,,ZR ST A<O.

The auxiliary functions h and g are defined by
h(r,t)_z:(r—t+1>(> o i1,
=0 2
g(r t|ab,c) = —(b+c) E aj(b —_ a)r—ict—j

=l (r =N -

Here h(r, 8) is just the probability of not more than r — ¢ heads on 2r — ¢ 41
flips of an unbiased coin. Several tables of & are available; e.g., [7]. The function

(3.4)
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g satisfies a number of recursion formulae. The most useful of these for computa-
tional purposes is

(3.5) tg(r,t]a,b,c) =agr—1,t— 1]a,b,¢c) + cg(r,t — 1|a,b,c).

The boundary condition,

(3.6) g(r,0a,b,c) = ¢ {e"(b"“) (b_:'_a)_} ,

and (3.5) provide a rapid method of generating a matrix of g values for any
triple (a, b, ¢) = (A, A/2,| z |). The right side of (3.6) is most easily calculated
as the product of two tabular values. The bracket term as a Poisson density
is tabled (see [4]).

The bound (3.3) on L is quite good for A = 0. Numerical checks show, for
example, that for values of A of the order of ten a bound of 0.01 on L adds
only one integer to R over and above that necessary to give an error < 0.01.
For A < 0 the bound is admittedly rather poor and certainly could be im-
proved.

To minimize the calculation necessary to evaluate F, a(x) the set R should
contain as few elements as possible. To accomplish this and still maintain a
specified bound on the error R should consist only of integers in an appropriate
interval including A/2 (at least when A = 0). However, from the standpoint
of iterated computation of the g function the optimum R set is {0, 1, 2, - - - , M}
for suitable M. In this case the bound (3.3) on L is, except possibly for an ex-
ponential factor, the tail area of a Poisson distribution; its value can be read
directly from tables [4].

At least three values of A lead to extreme simplification in the formula (3.2).
These values are the maximum and the minimum A value for fixed A, and
A = 0. The simplified forms make possible several quickly computed bounds
on F, a(z). The simplifications are

i 2r—t+l _ 1 lxll (A/2)r

_ —(AD—lzl .
Fy_ap(z) =€ et et T ot Y + L
T - ¢ r
(37) FA,()(x) - e—(A/Z)—Izl E Z h(”', t) l_‘;"_ _(_47{'& + L’
reR t=0 . .

FA,A/z(x) = %e—(AM)_hl'

The bound (3.3) on L (with A = 0) is also applicable for the first two lines of
(38.7). Since Faa(z) for fixed A and z is a monotone decreasing function of

A(—A/2 £ A = A/2), the following inequalities are immediately available.
Fr—ap(x) 2 Fra(®) 2 Fao(z) A =0,
Fro(x) Z Faa(z) = Faapl) A=0.

A simple but interesting application of (3.8) is the following bound on the prob-
ability that D is negative.

(3.8)
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. 14" < Pr{D i 0}

3 =Pr{D =0}

These are the best bounds possible that are functions of A only.

The quadratic form D is by no means representative of the class of all such
forms in four variables. In general, the distribution of a four variable form is
more complicated than that of D. There are certain special cases, however,
when the distribution function (3.2) does apply. The following theorem gives
a necessary and sufficient condition on four normal variables and on the ac-
companying form for the distribution to be that of this paper.

THEOREM. Let X = (X, , X2, X3, X4) be a random vector distributed by a mul-
tivariate normal law with mean vector u and covarignee matrix =. Let M be a 4 X
4 symmetric matrix. The quadratic form XMX'/2d is distributed according to
the law (3.2) if and only if the eigenvalues of the matrix M2 are d, d, —d and
—d. If such s the case A = wand A = uMi'/2d.

A proof is easily constructed by identifying the characteristic function of
XMX'/2d with (2.1).

4. Normal Approximation. Let D = D/(2 + A)!. Then, if A increases with-
out bound in such a manner that A/(2 + A)* — a, we have from (2.1) that
#5(t) — exp ({at — £/2). So, by the continuity theorem for characteristic func-
tions [2], for large A D is approximately normal with mean A/(2 + A)! and
unit variance. The question of how large A must be for the approximation to
render reasonable accuracy is quite difficult to answer. The following remarks
are offered to give some insight into this problem. Clearly, the rapidity of the
convergence depends upon A and |z | in some fashion. For A = 0 the approxi-
mation is very good since this is the symmetric case. With A fixed the accuracy
decreases as |z | increases. Numerical checks indicate that for |z | less than
threeand A about 20 the relative errorin the c.d.f.is less than5% . For the general
case with A not too far different from zero the accuracy seems to be roughly a
monotone decreasing function of |z | + A for fixed A. With |z | + A less than
four and A about 20 the relative error is less than 7% . For large numerical
values of A the approximation is extremely poor. For example, if A = 0(A)
and if [ z | > 0, then the relative error approaches 100% as A increases.

=
<

b. Derivation of Exact Distribution of D. Since ¢, is Lebesque integrable the
Lévy inversion formula [2] gives the p df. of D as

—Az 0 7, k
fra@) = [T ar = T 5 AW/

(6.1) 27 2 = Jglkl(d + k)!
' i
e yer e 9279z zi0zitk Q(x’ z)
Here,
+oo izt 2
(5.2) Q(x’ z) = _f oy dt = z—llze—lzh ,

forz < 0andz > 0.
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Evaluate the jth partial derivative of @ with respect to z first and integrate
faa(z) over the interval (— «, z). Then (5.1) becomes

(5.3) FA,A(x) = e_Alz Z <_1_>2 il [z—l (Az* _ %)r e—lzlul/z

2 reR 7'! az'

where R is any set of non-negative integers and L consists of the remainder
of the series; i.e., those terms such that r 2 R (here r = j + k).

Rewrite the factor (Az'> — A/2)" as an rth partial derivative of the appro-
priate exponential function of W evaluated at zero. Use Leibnitz’s Rule for
differentiating a product to compute the rth partial with respect to z of the
resulting function after choosing one product factor as 2. Employ the iden-

tity,

r P . I3

(5.4) o z_}e_azllz — (—%)PP!e—a E (2P - z) (20) :
1 .

dzF - P 7!

+ L,
Zeml

=0

with @ = | z| — AW, and complete the differentiation with respect to W. Con-
siderable algebraic simplification involving routine summing of finite combina-
torial type series gives the form (3.2) after the appropriate identifications have
been made with the 2 and ¢ functions defined by (3.4). The bounds (3.3) and the
simplifications (3.7) result from straightforward algebra. Details are omitted.
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