TESTS OF MULTIPLE INDEPENDENCE AND THE ASSOCIATED
CONFIDENCE BOUNDS!

By S. N. Roy anp R. E. BARGMANN
University of North Carolina

1. Summary. In this paper a test based on the union-intersection principle is
proposed for overall independence between p variates distributed according to
the multivariate normal law, and this is extended to the hypothesis of inde-
pendence between several groups of variates which have a joint multivariate
normal distribution. Methods used in earlier papers [3, 4] have been applied in
order to invert these tests for each situation, and to obtain, with a joint con-
fidence coefficient greater than or equal to a preassigned level, simultaneous
confidence bounds on certain parametric functions. These parametric functions
are, in case I, the moduli of the regression vectors: (a) of the variate p on the
variates (p — 1), (p.— 2), ---, 2, 1, or on any subset of the latter; (b) of the
variate (p — 1) on the variates (p — 2), (p — 3), -, 2, 1, or any subset of the
latter, etc.; and finally, (c) of the variate 2 on the variate 1. For case II, parallel
to each case considered above, there is an analogous statement in which the re-
gression vector is replaced by a regression matrix, 38, say, and the “modulus”
of the regression vector is replaced by the (positive) square-root of the largest
characteristic root of (88’). Simultaneous confidence bounds on these sets of pa-
rametersare given. As far as the proposed tests of hypotheses of multiple independ-
ence are concerned they are offered as an alternative to another class of tests
based on the likelihood-ratio criterion [5, 6] which has been known for a long
time. So far as the confidence bounds are concerned it is believed, however,
that no other easily obtainable confidence bounds are available in this area.
One of the objects of these confidence bounds is the detection of the “culprit
variates” in the case of rejection of the hypothesis of multiple independence,
for the “complex” hypothesis is, in this case, the intersection of several more
“elementary’ hypotheses of two-by-two independence.

2. Introduction, notation, and preliminaries. Case I, which deals with the
question of independence among p normally distributed variates, represents a
well known situation which has occurred repeatedly in applications. For case II,
which deals with the question of independence between k sets of normally dis-
tributed variates (where each set contains one or more variates), a number of
potential applications has been described by Wilks [6]. In addition to the situ-
ations mentioned by Wilks, an interesting application concerns the problem of
“unreliable measurement”. If we consider the p; variates z; (¢ = 1,2, - -+ , k) as

Received June 13, 1957.
1 This research was supported by the United States Air Force through the Air Force
Office of Scientific Research of the Air Research and Development Command.

491

[Z8 (€
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [& )z

The Annals of Mathematical Statistics. RIKOIS ®
Www.jstor.org
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different measurements of a physically identical quantity which, because of the
inaccuracy of the measuring instrument, are not in perfect correlation, the pro-
cedures outlined in sections 5 and 6 will study the independence or dependence of
the & underlying ‘““true” physical quantities. The “correction-for-attenuation”
technique which is widely used in this situation has two serious drawbacks which
the present method tries to overcome: (1) It assumes equal error variance for
each fallible measurement, and (2) it makes use of a statistic, the ‘“correlation
corrected for attenuation’, which is not a correlation coeflicient, for it may
attain values greater than unity. The present method is free from these short-
comings. The confidence bounds discussed in section 6 will then give an indica-
tion of the maximum attainable degree of prediction if infallible measurements
could be made.

Suppose we have a random sample of size n + I from an N[¢(p X 1), Z(p X p)],
with p < n. Then, denoting by S(p X p) the sample dispersion matrix, we know
that S is symmetric and everywhere at least p.s.d., (and also p.d., a.e.). It is also
well known that; a.e., there exists a one-to-one transformation from S(p X p)
to T(p X p) given by nS = TT", where T is a lower triangular matrix with
positive diagonal elements. Let £;; (1 = j = 1, 2, - -+, p) denote the elements
of T, si;and oi; (sij = S8ji, 05 = 050,18, = 1,2, --+, p) denote the elements
of S and 2, and let s* and ¢* denote the elements of S~ and =™". Furthermore,
let Tp1,2,00,(p=1) 5y T(p=1):1,2,¢++,(p—2)y *** 5 T3.1,2, and 2.1 denote, respectively,
the multiple correlation coefficient of (p) with (1, 2, ---, p = 1), of (p — 1)
with (1, 2, ---, p — 2), and so on, and finally the simple correlation coefficient
of (2) with (7). It may be noted that all except the last are non-negative and
a.e. positive. These multiple correlation coefficients will be called the step-down
correlations. Likewise, let
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2.1) @:-1,2,--4_1(1 Xt —1) = [origei* 0414 12 % 2"’ !
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(for i = p, p — 1, --+, 2) denote the population regression vector of () on
(1,2,---,7— 1) and

—1

S S12 te 81,4—1
’ — S12 S22 s 82,41
(2.2) b.-.1,2....'.1(1 Xt —1) = [s1480 81,4
81,61 82,1 Si-p,i1
(fori = p, p — 1, ---, 2) denote the corresponding sample regression vector.

These regression vectors will be called the step-down regression vectors.

Next, we will present the expression for the multiple correlation coefficient by
treating it as a special case of a canonical correlation (which will be convenient
for later purposes). We have
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—1
. S vee 81,i-1 S1i
-1
(2.3) 73.1,2,00,i-1 = Sij [s16+ -+ 85-1,.'] : te : :
S S e Si-1,4

fori = p,p — 1, --+, 2. Next we have, by using nS = 77",

s = [fa---tallla---tal’ = Zx t,
=

(2.3.1) tn o -.-- 0 ’
nlsy e Sim1d = [ta--- ti i) ta t?2 cee 0
S e
and

S c oo sl,i—l tll 0 oo 0 tll O PR 0 4
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It is then easy to check, by substituting the expressions (2.3.1) into (2.3), that

i—1 i 1/2
(2.4) it i = +[Zl t3; Z; t%,-] ,
J= J=

fore =p,p—1,.---,2
Now, let us turn to the case of a (p1 + p: + - -+ + pi)-variate (= p-variate,

say) normal distribution and partition the population dispersion matrix, >,
into

2}1 e 0 Zu| (o)

Sty Tey e+ 3
(2.5) Xexp =T @)
E;k 2;:; cee Zn (ps)
(p1) (p2) (pe)

and the sample dispersion matrix, S, into

S}l Sz -+ Su (Pl)
A Sl Sy - S

(2.6) S(p % p) — .12 .22 o .21: (pz)
S;k S':’k cor S (p::)-
(p) (p2) (pe)
Regarding each submatrix as an element let us say that there are k¥ “pseudo-
rows” and k& “pseudo-columns” in the matrices on the right sides of (2.5) and
(2.6).

Let Bi1a,...,i1 and Biag,....s1 (for ¢ = k, k — 1, --- , 2) denote the popu-
lation and the sample regression matrix of the (p:)-set on the (p;_y + pi-g + - -
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+ p;)-set. These matrices are given by the expressions:
Bi-l,z,u-,i—l(pi X Picy + Pice + -+ + pz)
Zn Zi2 0 Z1ia

(2.7) ! ... .
= [2LZ5 - i 2012 2022 L i

—1

’ ’
Z1ia Do o D
and

Biag,ia@i X picg + pie + <+ + 21)

2.8) Su S e Sy
: = 1SiSh e Sl | S S Bai

’ ’
Siia Sz cor S

fort =k, k — 1, ---, 2. The B’s and B’s will be called the step-down regression
mairices. Also let us denote by

1 2
(281) 0= coir S 6Daia S e

(pi)
C.'.pf'z.....;_l § 1

lIA

the p; characteristic roots of the matrix

L , Su o+ Suea [ Su
(2.8.2) S7i181:82: + + + Siadl ) cee . . ’
S1,i1 o0 Sicim S,

fori =k, k — 1, .-+, 2. It will be noticed that these ¢’s are the squares of the
canonical correlation coefficients of the (p;)-set with the (p; + ps + - - - + piy)-
set and that, a.e., the inequalities in (2.8.1) will be strict. For any (p.)-set, all
the p; canonical correlation coefficients (or rather, as will be seen later, the
largest of them) will play the same role as 7;.1,2,...,;—1 in the previous case. These
will be called the step-down sefs of canonical correlations. We are assuming here
for simplicity of discussion, but without loss of generality, that the sets are so
numbered as to make Z,'::{ p; = pi, (for7 = 2, 3, -, k). The matrix cor-
responding to T in the previous case will be introduced in a later section.

Sections 3 and 4 will be concerned with the first case; i.e., the case of a p-
variate normal distribution; section 3 will describe a test of the hypothesis
Hoio5i =0( %7=1,2, ..., p), and section 4 will present simultaneous con-
fidence bounds, fori = p, p — 1, ---, 2, on (Bi-1,--.i-1Bi1.2..-.i1)" " (and on
truncations obtained by deleting any 1, 2, --- , (¢ — 2) variates of the (z — 1)-
set).

Sections 5 and 6 will be concerned with the second case, i.e., that of a (p1 +
ps + -+ -+ -+ pi)-variate normal distribution; section 5 will describe a test of the
hypothesis Ho: D_¢j = 0 (s %2 j = 1,2, --- , k), and section 6 will present simul-
taneous confidence bounds, for7 = k, &k — 1, - -+, 2, on the largest characteristic
root of (B;.l_z_...,,-_lﬁé.l_g,...,;_1) (and on truncations obtained by deleting any
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1,2,---, (Z — 2) of the sets (p;), (p2), -+, (pi—y)). It will be noted that, in
case I, the variate (¢) is independent of the variates 1,2, --- , ¢ — 1 if and only
if @:.1,2,..,1-_1[5;.1,2,..,,-_1 = 0, and, in case II, independence of the (p;)-set on the
[(p1), (Do), -+, (pi—)]-set implies, and is implied by, the vanishing of the
largest characteristic root of (Bi.12,....i18%.1.2,+--,i-1)-

3. Independence in the p-variate problem.

3.1. Independence (in distribution) of the step-down correlations, under the
null hypothesis. The joint distribution of the t;s, for general >, is well known
and given by

» . P
(3.1.1) const - exp [— —%tr > TT’] 117 11 des.
=1 i2j=1

Among various proofs, a récent one is given in [1, 2]. Under the null hypothesis
we have >, = D,,,, where the right side denotes a diagonal matrix with
elements o1, 092, - -+, 0pp . In this situation, (3.1.1) reduces to

P b P i
(3.1.2) const - exp [— 1 > t;f-/ a;c] I e T 1T atss
2 i3 j=1 i=1 i=1 je=l

It should be noticed that the #:;’s vary from 0 to « > and the t;’s from — » to
+ . Now a comparison with the expression (2.4) shows immediately that the
Ti12,--,i-1'S (¢ = p, --+, 2) are independently distributed, and their joint dis-
tribution is given by

2
(31.3)  const - cII (7%-1.2.---.1’—1)('-3)/2(1 - 7‘%4.2.-‘-,.'-1)("_'_1)/2)( d(ria2,0m 50).
=P

3.2. The proposed test and a reason for the allocation of component proba-
bilities. The proposed test is as follows:

b4
Accept Ho over N [rfyz2...i0 < u), and
=2

(32.1) »
reject Ho over .Uz [riag,...ia > ul,
-
where u is given by
y 4
(32.2) I]; Plriiz.in S ulpirg.ia =0 =1— a
P

To obtain u, proceed as follows: Take a trial value, u; , say, between zero and one.
Using this value for given n and for¢ = 2, 3, - - - , p obtain, from the Tables of the
Incomplete Beta Function, the probabilities corresponding to the individual fac-
tors on the left side of (3.2.2); call these probabilities vz, vs, - - * , v» ,.say; form
the product of the v,’s and denote it by v. Proceed in the same manner for other
trial values, ps , us , etc., and plot the u;’s against the resulting v’s. Then, on this
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plot, u in (3.2.2) is that value of the u;’s which corresponds to y = 1 — «, the
preassigned confidence level.

It is obvious that, if the same u goes with the different component regions
[Piye,...ic0 < 4, the probability measures that go with these regions are all
different. One reason why we make this kind of allocation of the different v,’s is
the following: Notice that the acceptance region for H, is the intersection (over
t=p,p—1,---,2)of regions [r7.14,....1 < u]; but, for agivend, [rhag,...iaq =
u] is itself the intersection of regions of the type [ri..az2.....cn = u, where
Ti.r@ze,---,«1 denotes the (simple) correlation of the sth variate with any linear
combination of the variates (1, &, --- , ¢ — 1) which includes, as a special case,
the variates (1, 2, - - - , 7 — 1) ¢ndividually. Thus, if we allocate the v,’s in such a
way as to make u the same for each component region, we attach the same weight
not only to the correlations between any pair of the observed variates but also to
the correlations between each variate and linear combinations of some others.
The reader will perceive that this allocation is not completely symmetric. While
symmetry is preserved with respect to all correlations by pairs, the step-down
procedure is asymmetric as regards the correlation of any variate with any
linear combination of all the other variates. However, this is perhaps the best
that could be done under this particular approach. It should be noted that, if the
square of any simple correlation in the correlation matrix exceeds the value g,
we will have to reject the hypothesis of independence. If, however, the square of
the largest correlation coefficient in the correlation matrix stays below u, we will
have to perform the step-down process in order to decide on acceptance or re-
jection of the hypothesis of independence.

3.3. Relation to the likelihood-ratio test. Since the determinant of R, the
correlation matrix, equals (1 — 75.1.5,... p—1) X (1 = 75 112,00 p2) - -+ (1 — 73.1),
a test based on the product of the complements of the squares of the step-down
correlations is equivalent to the likelihood-ratio test. While the distribution of
the determinant of R is fairly complicated, even under the null hypothesis of in-
dependence [7], its moments [6] are well known and easily obtained from the joint
distribution of the correlation coefficients under the hypothesis of independence.
It can be easily verified that they satisfy the recurrence relations:

rPA i—1
(3.3.1) u,-=H(1— — >

i=1

and

» ,
(3.3.2) ol = He I:Il (1 - nz——l—‘%&)

From these relations it is quite simple to obtain the moments, hence the co-
efficients of skewness and kurtosis, and, from Table 42 of the Biometrika Tables
for Statisticians [8], we can obtain, at least for moderately large n, very good
approximations to the desired percentage points of the cdf. Thus, for testing the
hypothesis of independence, the determinant test is quite useful and closely re-
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lated to the step-down procedure presented in this paper. At the moment, how-
ever, we do not know of any method to use this determinant test for the con-
struction of confidence bounds on parametric functions without running into
complicated non-central distributions, whereas the step-down procedure, as de-
scribed above, can be immediately inverted for the purpose of constructing
simultaneous confidence bounds.

4. Confidence bounds associated with the test of independence for a p-
variate problem. For shortness, let us now denote by just r; the riiz,... i1
defined by (2.3) and (2.4), by just 8; (with components 8, Bz, -+, Biiz1,
say) the Bi.1,,....s1 defined by (2.1), and by just b; (with components by ,
b, -+, biia, say) the by.,z,... .1 defined by (2.2). Assuming a general (sym-

metric, p.d.) Z, let us now transform the original variates ;, 2, -+, T, to a
new set zy , 25 , --- , z» defined by
xf 1 0 0 0 =
3 —Bn 1 0 0 |[ 2
0

(4.1) x.:: =| —Ba —Pz 1 T3
xa’éJ =B =B —Bw -+ —Bppa 1 pr

Then it can be verified by induction or otherwise that the new variates are un-
correlated and hence that the step-down correlations of the new variates,
rfag,..ia, 88y, (6 =p,p—1,---,2) are independently distributed. With a
joint probability, 1 — «, say, let us now make the simultaneous statements:

(4.2) i1 S u (forz =p,p —1,---, 2).

We have already seen that, given u, we can easily find « and also, given «, we can
find u. In order to invert the typical component statement (4.2) and thus make a

confidence statement on 8;.1,2,...,i1, 1.6., 0on [Ba , - -+ , B:,i-1], We observe that the
multiple correlation coefficient between zf and [zf, 27 , --- , zF.] is the same
as that between 2 and [z,, 25, -+, %], since the starred variates in the

first square brackets are linear combinations of just the non-starred variates
the first square brackets are linear combinations of just the non-starred variates
in the second square brackets; this fact simplifies our calculation of the desired
expressions in terms of the S matrix, i.e., the sample dispersion matrix of the
original variates. We may now use the results obtained in reference [4] in con-
nection with the confidence bounds on a (pseudo-) regression matrix of a p-set on
a g-set (p = ¢) for a (p + g)-variate normal distribution. Let us take expression
(3.2) from reference [4] and renumber it as

(4.3)  Chax(BB') — Ailax(Sr.2)chax(Sm) < chiax(88') S chax(BB’)
+ )\C:n/azx(sl-z)cnlnlazx(sﬂ_zl);

where B and B are the sample and population regression matrices of the p-set on
the g-set given, respectively, by B = 8128z and 8 = D> 120 2 ; Si. is the
sample “residual”’ matrix of the p-set on the ¢-set given by Sy =
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S — S12833 812 ; Sw is, of course, the sample dispersion matrix of the g-set.
Given a preassigned confidence coefficient, 1 — «, the value of A in (4.3) can be
obtained from the central distribution of the square of the largest canonical
correlation coefficient, for which recursion formulas are available [2].

Forp = 1land ¢ = ¢ — 1, (4.3) reduces to

(4.4) (b:bi)llz — N8is — S:Sc‘—-l-lsi)llz’ C:ln/fx('g._—lr) = (@:@i)llz = (b;bi)”2
+ )\(sii - S::S?llsi)llzcgfx(sz-ll)y

where b; and 8 are defined in the opening paragraph of section 4, and

S:(I X1—-1= [sli S25, 000, sz’—l,i],
(4.4.1) su e Sea
SiaG—IXi=D=| - - - |,
81,641 Si1,i-1

and, finally, A = +[u/(1 — u)]"%, where u is obtained by the procedure outlined
in the sequel of (3.2.2). It then follows that the typical statement (4.2) = (4.4),
and therefore simultaneous statements (4.2) forz = p, p — 1, - -+ , 2 will imply,
with a joint probability =1 — «, simultaneous confidence bounds (4.4) on
g:@ifor?: =0,P — 17 et 72'

In equation (3.1) of reference [4], we may put p = 1 andq = ¢ — 1 and choose
the vector d; given there in such a way as to make any one, any two, etec., and
finally any (¢ — 2) components of d, equal to zero; if then we make the cor-
responding transition from (3.1) to (3.2) given in reference [4], we will have,
along with each typical statement (4.4) above, truncated statements where any
one, two, etc., finally any ( — 2) components of 8; and b; have been deleted
without, however, disturbing the expressions that occur with A. Thus, statement
(4.4) and the truncations mentioned above will result in 21 — 1 joint con-
fidence statements for given ¢. Since 7 can take the values p,p — 1, ---, 2, we
will have, altogether, > %-, (2°* — 1) = 2 — p — 1 confidence statements with
a joint confidence coefficient 21 — a.

6. Independence in the (p; + p: + - -+ -+ px)-variate problem.

6.1. Independence (in distribution) of the step-down sets of canonical corre-
lation coefficients, under the null hypothesis. Starting from (2.6) in section 2 we

shall make a transformation from S to a partitioned triangular matrix, 7', given
by

(p1) Ty ~0 e 0 Tu ~0 Y I

(p)| Ta Toe -+ O | Tax Tee -+ O
nS(po)= . . . . .

(pb) Tu Twe --- Tu Ta T --- Tu

(P) (ps) (ps)
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The distribution of the elements of T', under a general >, will be given by

P L
(5.1.1) const - exp [— %tr Z_IT’T’] L7 11 dry,

i=1 $2j=1

where p = py + po + --- + pi, and Ty = T,; (ie., triangular). Under
Hy: ii=00G=j=1, -, k), (6.1.1) reduces to

2, .-
k

const - exp [-— %E tr 35 (Ta, -, T)(Ta, -, Tii),:l
i=1

(5.1.2) ) L
117 I ars.
=1 ij=1

For shortness, let us write the matrix (2.8.2) in the form

(5.1.3) St 89 874,89,

where

7 ’ ’
G.14) SV Xp+ Pt +piy) = [(*;;) gj;') f;:")] (P2,

and

Su -+ Si,ia
Sicalpr + -+ + picy Xpr + -+ + piy) = e e .

’
Sl.i—l' . Si-—l,i-—l

Also, let us denote the p; characteristic roots of (5.1.3), ordered from the smallest
to the largest, by
[, e, oo, o).
It then follows directly that
(5.1.5) nSsi = [Ta -+ TillTa -+ Ti,
Tu 9 . 0 ’

nSO = [Ta - Tl | T2 T2 0

Tiag Tiae o+ Tictia

Ty 0 --- 0 Ty 0 --- 0 ’
nSiy = ; Coee ; Coeee .
Ti—l,l * cer T‘i—l,i-—l Ti-—l,l M e Ti—l.i—l

Substituting the expressions (5.1.5) into (5.1.3) (or (2.8.2)), we see that (5.1.3)
reduces to

(5.1.6) I:i Ti; Téi]_l [il T Tﬁi]'

=1 Jm=1

and
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Now, since by (5.1.2) the sets [T -+ - T.] are independently distributed under
the null hypothesis, for ¢ = k, k — 1, --- 1, it follows that the sets of char-
acteristic roots of (5.1.3), viz.,

(1) (p2) (1
[e2”, ooy ™), es”, cee, ), e, [alD, e, )

2

are independently distributed.
5.2. The proposed test of independence. We propose the following test:

k
(521) - Accept H, over .ﬂ [P <], and

reject Hy over U e > ],

=2
where X\ is given by
k
(5.2.2) II Pl = M|+ =0l =1 — q
1=2
and y denotes the largest characteristic root of D> i+ D" 3 7% 2., where

the D .;’s are obtained from D in exactly the same way as the S;;’s from S in
equations (5.1.4). It will be noted that v{** is zero if and only if, for given
4, D uj=0,forj=1,2,--+,i—1. Analogous to section 3.2., we take the same
value of A for each factor on the left-hand side of (5.2.2); the reason is the same as
that given in section 3.2. The procedure for obtaining A is analogous to that given
for p in section (3.2.) except that the incomplete Beta function needs to be re-
placed by the central distribution function of the (square of) the largest canonical
correlation coefficient. The distribution and recursion relations for particular
values are discussed explicity in reference [2].

6.3. Relation to the likelihood-ratio test. Denoting the jth canonical correla-
tion coefficient of the pi-set on the (p; + P, + -+ + pig)-set by r¢la....i1,

we see that
(5.3.1) 1— e i = ¢PISTE(Ss — 89 872,89
(J)[R (R,. R(D’RTl R(ﬁ]

where ¢ denotes the Jjth characteristic root, and the R’s are the sample cor-
relation matrices corresponding to the covariance matrices, S.

Thus,

(53.2) Ha— @by = LBl
O, i $e1,2,000,i—1 IR“I IR,'_I i ,

and the product of the products of all step-down canonical correlation coefficients
(or rather, of the complements of their squares) becomes

(53.3) T =2y =  IBL
e =2 =l Bl H;-: | Rii|’
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because |R;| = |Ru|. Thus, a comparison with reference [6] shows that a test
based on the product of products of all step-down correlations is closely related to
the likelihood-ratio test. The distribution of this statistic, under Hy , is discussed
in [7], and the moments are given in [6]. They can be readily obtained if, in the
joint distribution of all 7,,’s (for a general matrix (¢;;) = R, say)

P(R|R) = PL(rp/2) N : g]::,z
(5.3.4) PO g T(n — i+ 1/2)
»
X [ .[ [tr(;itﬁ—l‘ Dg Iglﬂ):i'lﬂ’“ ‘111 dri;,
(where Dp is a diagonal matrix with elements ¢ /%,
e<ﬁl—ﬂ2>/2’ e(ﬂz—ﬂa)ﬂ’ e e(ﬁp—rﬂp_l)/z, eﬂ”“’z)
we set
Bu 0 0
g=|0 E= 0
0 0 R

The moments satisfy the convenient recurrence relation:

[ H4=1(n'—(I+1)
(5.3.5) I HJ=1 H|=l m—i+ D’

and

iy = 4 H.,=1(n+2a—q+1)
oF aHJ=1 :—1 (n+2¢¥—l+ 1).

Thus, for testing the hypothesis of independence between & sets of normally dis-
tributed variates, the determinant test is quite useful and closely related to the
step-down procedure. At the moment, however, we cannot easily construct
simultaneous confidence bounds on parametric functions on the basis of the
determinant test, whereas the step-down procedure can be inverted into a
simultaneous confidence statement.

6. Confidence bounds associated with the test of independence for a
(p; + pe + - -+ + px)-variate problem. Using (5.1.4) let us rewrite Bi.1,2,...,i—1 in
(27) a,nd Bi.l,g_..,,‘_l in (28) as

(6.1) Bimi X pr + P+ - + piy) = 22

and

(6.2) Bi(p: X (o1 + pe + -+ + piy)) = SVSEL.
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Next we partition 8; into
[Ba B - - Biinl
(@) (ps)  (Pit)
and B; into
[Ba Biz -+« Byl

Assuming now a,_general (symmetric, p.d.) Y, let us transform the original

variates Xi(p; X 1), Xa(pe X% 1), -+, Xe(pe X 1) into a new set of variates x;" ,
x5, -+, X¢ defined by

x| @) [I@) 0 0 .- 0 0 I'xl
ORI R D SO S |

xi | (px) —Bia —Bre - o —Bera I(py) [_Xk

Then it can be verified by induction or otherwise that the & sets of new (starred)
variates are uncorrelated, and hence the step-down sets of (squares of) canenical
correlations, [z, -+, 7], [es®, -+, ), -+, [€®, .-+, cr®¥] are
independently distributed. With a joint probability, 1 — «, say, we may thus

make the simultaneous statement
(64) c?(m) = (fOl"i = k) k — 1, .-, 2)'

Analogous to section 4, with the modifications given in 5.2., we can find A if « is
preassigned. By the same argument as in section 4, and by using (4.3) we can
obtain, with a joint confidence coefficient =1 —a, the following sets of simul-
taneous confidence bounds, for¢ =k, k — 1, --- , 2:

(6.5) Chlz(BBY) — Aehax[Sii — 8 S8 etl2(Sih1) < chi(8:87)
< al2(BBY) + MMhlSu — SYSTSPleE (S,

where 8; and B; are defined by (6.1) and (6.2), S and S, by (5.1.4), and
3% and 3., analogously. Following the argument presented in section 3 of
reference [4] and in section 4 of this paper we see that, with a joint confidence
coefficient =1 —a, not only can we make the (k¥ — 1) statements (6.5) but, for
each typical statement under (6.5), we can also make a number of truncated
confidence statements by deleting any number of variates of the (p;)-set and any
number of variates of the (p; + ps + - -- + piy)-set taking care only that the
number of variates left in the (p; + --- + p._;)-set is not less than that left in
the pi-set.
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