EXACT PROBABILITIES AND ASYMPTOTIC RELATIONSHIPS
FOR SOME STATISTICS FROM m-th ORDER MARKOV
CHAINS!

By Leo A. GoopmaN
University of Chicago

Summary. An exact formula is presented for the probability of a specified
frequency count of m-tuples (m = 1) in a sequence X;, X,, -+, Xy from a
Markov chain of order m — 1 having a denumerable number ¢ < « of states.
An exact expression is also obtained for the conditional probability of a specified
m-tuple count, given the n-tuple count, when the chain is of order n — 1 (n <
m). If a < o, then this conditional probability, when regarded as a statistic
computed from the observed sequence, is shown to be asymptotically equivalent
to the product of the probabilities (regarded as a statistic) associated with a cor-
responding set of @” ™ contingency tables with assigned marginals (each table
having a™" row and a columns), where in each table the two attributes de-
scribed by the table are i=dependent. This fact leads to several simplified tests,
related to standard tests of independence in contingency tables, for the null
hypothesis H,; that the Markov chain is of order » — 1 within the alternate
hypothesis H.._, . Analogous results are also obtained for circular sequences.

1. Introduction. For a circular sequence, Reed Dawson and I. J. Good [4]
have presented an exact expression for the conditional probability of a specified
frequency count of m-tuples, given the n-tuple count, in the special case where
the sequence is stationary and is of so-called zero Markovity; i.e., all (N — 1)!
circular permutations of a sequence of N characters are equally likely. It is also
proved in [4] that this expression, obtained under the assumption of zero Markov-
ity, is also valid for “negligible’” Markovity; i.e., for a stationary chain of order
n — 1 or less (n < m). (The term “Markovity of order m’”’ means that the
Markov chain, from which a (linear) sequence of observations is obtained, is of
order m; a definition of a “chain of order m” is given in [10] and in Section 3
here. The circular sequence is defined in [4] as a linear stationary sequence with
the ends joined.) For a (linear) sequence of N consecutive observations from a
stationary chain of order n — 1, the conditional probability of a specified m-
tuple count, given the n-tuple count, is presented in [4] as the value obtained
by augmenting the linear sequence with a blank placed at the end of the sequence,
circularizing the augmented sequence, and then applying the exact expression
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for circular sequences to it. The treatment of linear sequences presented in the
present paper is more direct, and leads to some different results from those given
n [4]. An exact expression is given here for the probability of a specified m-tuple
count in a sequence from a chain in the more general case where it need not be
stationary and can be of order m — 1 (a case of nonnegligible Markovity). An
exact formula is also obtained for the conditional probability of a specified m-
tuple count f;,....,, in a linear sequence, given the n-tuple counts
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when the chain need not be stationary and can be of order n — 1. Even in the
case where the chain is stationary, the formula developed here refers to a dif-
ferent question and is numerically different from that presented in [4]. (In [4],
the conditional probability of a specified m-tuple count f;,...;, , given the n-tuple
count f,...;, , is presented for the stationary chain.) We shall see that, for a
(linear) sequence of observations from a chain, it appears to be more relevant to
compute the conditional probability when then-tuple counts f,....,. and f.s,, .14,
are given, rather than when the n-tuple count f,...,, is given.

For stationary circular sequences, it is proved in [4] that, when the chain is of
zero order and hasa < « states, then the conditional probability of the observed
m-tuple count f,...;,, , given the 1-tuple count f; (when this probability isregarded
as a statistic), is asymptotically equivalent (for N large and fi/N — k; > 0), to
the probability of the cell entries f,...;,, in a contingency table with assigned
marginals fi,.. i,_, and f;, when the two attributes described by the table are
independent. In the present paper, this result is generalized to show the asymp-
totic equivalence, when the chain is of order n — 1, between the conditional
probability of the observed m-tuple count, given the n-tuple count, and the
product of the probabilities of a corresponding set of cell entries in a*™ con-
tingency tables with assigned marginals. An analogous result is also obtained for
linear sequences from a chain of order n — 1. (The result in [4] for stationary
circular sequences of zero order cannot be applied directly to the conditional
probability, presented in [4], for the circularized augmented linear sequence
(since ‘the 1-tuple count fz for the augmented blank is 1 and fz/N — 0); the
authors in [4] refer the reader to the present paper for results for linear sequences).

These results lead to the fact that any asymptotic test of contingency for the
a”" independent contingency tables can be used to test the null hypothesis
H.,_; that the Markov chain is of order n — 1 within the alternate hypothesis
H..; . The likelihood ratio test of H,_, within H,, given by P. G. Hoel [10],
can be seen to be of the same form as the joint likelihood ratio test of contin-
gency computed for the a®™ independent contingency tables. The test of H._,
within H,,,, presented by I. J. Good [8] for the circularized sequence, can be
seen to be of the same form as the joint likelihood ratio test for the ™' contin-
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gency tables related to the frequency count for the circularized (but not aug-
mented) sequence. (Good also deals with the linear sequence in [8], but he agrees
that his paper contains some slips. In applying results obtained for circular
sequences to linear sequences, there is a real possibility of errors. (See Corrigenda
to [8] and Leo A. Goodman [9].)) For the linear sequence, the likelihood ratio
test of H,_; within H,._, , and the x’-test of the form used in contingency tables
(which is equivalent to the likelihood ratio test), were presented by T. W. An-
derson and Leo A. Goodman [1]; but these authors were concerned mainly, in
[1], with a large number v of sequences of N consecutive observations from a
chain with a finite number of states, where v — © and N was fixed and could,
in fact, be small. There was one brief section in [1] dealing withv = 1 and N —
«, and it was based on a long sequence (asymptotic) result, due to M. S. Bart-
lett [2], concerning the 2-tuple count. The results developed in the present paper
are based directly on the exact formula for the distribution of the m-tuple count
when » = 1 and the chain has denumerably many states.

The approach used here is related to, but different from, earlier work ([1],
[2], (6], [13]), where the observed transition proportions were shown to have
some properties similar to those of the observed proportions from a set of inde-
pendent multinomial distributions.

The exact formula developed here for the distribution of the m-tuple count
from a chain of order m — 1 is a generalization of a result, due to P. Whittle
[13], for the special case of m = 2. A difterent, and perhaps simpler, proof of the
result in {13] will be presented, and it will be related to the work in [4]. The gen-
eralization in the present paper is based directly on this result.

When indicating how many degrees of freedom certain statistics (which were
asymptotically x*) had, most of the articles mentioned in this section assumed
(either explicitly or implicitly) that all the transition probabilities in the Mar-
kov chain were positive; for the sake of simplicity, we shall do likewise here when
indicating the size of certain contingency tables (and thus how many degrees of
freedom the x* statistics corresponding to these tables have). If some of these
probabilities are zero, then the methods developed in the present paper can be
modified in a straightforward manner to obtain analogous results (see [2]).

2. The 2-tuple and 1-tuple counts. Suppose that a sequence X;, X2z, -+, Xy
is obtained from a first order Markov chain with constant transition probability
matrix P = [p;;]; i.e., the probability is p;; that X, = j, given that X, ; = <.
For the sake of simplicity, we first assume that the chain has a finite number
a < o of states. We write f;; for the frequency in the sequence of the 2-tuple
G, 7) G, j=1,2 -+, a); we also write >_;fi; = fi. and >_;f; = f.s. If the
chain begins in state r and ends in state s (X; = rand Xy = s), then

(1) fi- - fw‘ = 8 — 04 (7' = 1; 2; ya))
and

@ Lf=2fi=N-1,

s
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where §;; equals 1 or 0 according as ¢ and j are equal or unequal. The following
result, based on the work in [13], will be used here. Let T.(f;;) be the (sr)th co-
factor of the @ X a matrix [5;; — fi;/f] = M if the f;; satisfy (1) and (2), and
let it be zero otherwise. (It can be seen that T,(f:;) does not depend on r and is
nonnegative.) Then the probability I], (fi;, s) that the 2-tuple count will be
fii(5,5 = 1,2, -+ -, a) and that the sequence ends in s, given that it begins with
r, is

H f i f
3 T.(f: i,
3) (fJ)H Hyf:J'I‘Ile
(Actually, it is stated in:[13] that (3) is the probability ] I,. (f:;) that the 2-tuple
count is f;;(z, = 1,2, -+ -, a), given that the sequence begins with r and ends
with s; this is not quite correct, but can easily be corrected, as has been done
here.)

Formula (3) willhold only if N = a,and f;. > Oandf.; > 0z = 1,2, -+, a).
However, for N < a or some f;. or f.; equal to 0, (3) still holds if calculated on
the basis of a process including only those states that have been observed (see
(13]).

A proof of (3), different from that given in [13], will now be presented, since
it may increase the understanding of this formula and also since a somewhat
different procedure for computing (3) is obtained. This proof uses an approach
similar to that applied in [4] to circular sequences with negligible Markovity.
It is based on the following combinatorial theorem, called the BEST theorem
in [4] (due to N.G. de Bruijn, T. van Aardenne-Ehrenfest, C.A.B. Smith and
W.T. Tutte [5]): Givén any a X a matrix M = [m,;] of nonnegative integers,
there corresponds an oriented linear graph, with vertices 1, 2, - - -, a, such that
the number of oriented paths (edges) leading from vertex 7 to vertex j equals
m;; . The matrix, unique to within the same rearrangement of rows as of columns,
is called the incidence matrix of the corresponding oriented linear graph. The
graph is defined as simple if m; = »_;m:; = »_;m;;. A circuit in such a graph
is defined as a unicursal path passing exactly once through each edge (in the
rlght direction). Let M’ = [mi;] be the ¢’ X o’ matrix formed from M by delet~
1ng every row and column cons1st1ng wholly of zeros. Then Y _; : m,l = > m,. =
mi>0, for i=1,2, ---, a. Let M* = [m¥,], where m¥; = mis;; — mi; .
Since M* is a square matrix with each row and column summing to zero, the
cofactors of its elements are all equal; let || M* || be the common value of these
cofactors. Then the BEST theorem asserts that the number C(M) of distinct
circuits, when all the edges are distinguishable, in a simple oriented linear graph
with incidence matrix M is

C(M)=||M*||-ﬁ(m.~—1)!.

Let N,.(M) be the number of circuits that begin at vertex r and end at vertex
s; i.e., the number of paths that pass once through each edge, except for one of
the edges leading from vertex s to vertex 7. Then, when all the m;; oriented edges
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from vertex ¢ to j are distinguishable, we have that N, (M) = C(M)m,, . If
these edges are not distinguishable, then the number of circuits that begin at
vertex r and end at vertex s is U, (M) = N, (M)/[L:;m:;! = ¢) /IL.; i,
where f,, = m,, — 1 and f;; = my; for (4, j) # (s, r); U,.(M) is the number of
paths that pass directly from vertex ¢ to j in total f;; times, and that begin at
vertex r and end at s. If > ; D ;fi; = N — 1, the probability of observing any
given path (a sequence of vertices or states) that begins at » and ends at s in a
sequence X;, Xz, -+ Xy from a chain with transition probability matrix
P = [pi;], given that X; = r, is [[.; p/’. Since the number of such paths is
U.,(M), the probability of observing one of these paths is

11 = 00 T~ [£00 T
[TS = H=ll(Im, 7 11) s mi] IT:; ol

_ [mm II. 7. 3]H~- Pl
IL:i 7 v

where T'(f;;) is the cofactor of an element in the.sth row of the matrix M** =

[m¥*], where m¥* = m¥;/m;. Q.E.D.

A similar proof was also independently obtained by Dawson and Good in an
unpublished note. This proof indicates that (3) holds even when a is infinite,
since it depends essentially on the @’ X o' matrix M*, where o’ is finite when N
is finite, rather than on the a X @ matrix M. Thus, the exact formula, presented
in [13] for the chain with a finite number of states, also holds for the chain with
denumerably many states. (See [6] for some asymptotic distribution theory for
first order chains with denumerably many states.”) This proof also indicates
that [, (f:;, ) can be computed from the expression [C(M) /11;; 1] IIL; p{;ﬁ" ,
where m;; = fi; for (2, j) # (s, r) and m,, = fir + 1, which may sometimes be
simpler to apply directly than (3).

If r is given, and the f;; satisfy (2) and also (1) for some s, then that s is unique.
Thus, s can be determined by (1) as a function of the f;; when r is given. Since
the probability [, (f.;) of the 2-tuple count f:; , given that X; = r, is obtained
by

@ IL G = 211 (i 5

and since ] [, (f:;, 2) is O for all values of z > s, we have that II. ¢.) is equal
to (3), if the f;; satisfy (2) and also (1) for some s.

The probability [], (fi; | 8) of the 2-tuple count f;;(5,j = 1, 2, ---), given
that the sequence begins with » and ends with s (which is the verbal (not quite
correct) description that was given in [13] for (3)), can actually be obtained by

2T am indebted to K. L. Chung for bringing [6] to my attention.
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dividing [1, (fi;, s)- by the probability pl¥ ™ that the sequence ends with s:
pt¥ ™ is the (rs)th element of the transition probability matrix P = [p,‘-i"”].

If X, is a random variable with a probability p, of being in the rth state, then
the probability [ (i;, s, r) that the 2-tuple count is f;; , that Xy = sand X; =
7, is simply 1] (f:;, $)p» . The general approach given here can also be used to
obtain exact expressions for the probability I1 ¢, -, r) that the 2-tuple count
is f;; and that X; = r, for the probability ] (f:;, s) that the 2-tuple count is
fi; and that Xy = s, for the probability 11 (f.;) that the 2-tuple count is fi;,
and also for various conditional probabilities.

The distribution of the f.; = Y_:fi; will now be studied, when the chain is of
zero order; i.e., p;j = p.jfors,j = 1,2, ... . The f.; are the 1-tuple frequencies
in the sequence X3, X3, + -+ , Xn ; i.e., f.; is the number of observations in state
7 among this sequence. The probability IL (f.;, s) that the 1-tuple count in
this sequence is f.; and that Xy = s, can be derived using the standard multi-
nomial formula, and we obtain -

. —_— f'8 ) (N - 1)! f.]
® IL G = (5L) Gy Tt
Therefore, for a zero order chain, the conditional probability 11, ¢ fiilfi, 9
of the 2-tuple count fi; , given the f.; and s and r, can be obtained by dividing
(3) by (5), when the f;; satisfy (1), (2), and also > ifii = f.i. (We can assume,
without loss of generality, that f.; and s are such that II. ¢.;, ) > 0.) Thus

® ILuslsso =100/ ()| [ Tt ]

the second factor is the probability P(fi; | f.;, fi.) of the cell entries f;; in an or”
dinary contingency table with assigned marginals f.; and f;. , where the two
attributes described by the table are independent (wee, e.g., [12], p. 278).

Since the f;. can be determined by (1) from the f.; , r, and s, we have that (6)
is also the conditional probability 1L (i1 1.5, f) of the fi;, given the f.;, fi. ,
and r; and (5) is the conditional probability II- (7.5, i) of the f.; and f..,
given r. Furthermore, since the 1-tuple count f; in the sequence X, , X5, -+, X»
can be determined from f.; and r by the relation f; = f.; 4+ 6;», (6) is also the
conditional probability I, (fi; | f;, s) of the 2-tuple count f;; , given the 1-tuple
count f;, and 7 and s.

From (6), we obtain

@ .69 / () - IL U 17,50/ PGs £ 1)

We shall now prove that the statistic (7) converges in probability to unity (thus
1L (i1 5.5, f+) and P(fi; | f.;, fi.) are asymptotically equivalent), if the chain
is of zero order and p;; = p.; > 0. In this case, f.,/(N — 1) converges in prob-
ability to p.,, and it will be necessary to prove only that T.(fi;) converges in
probability to p., .
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For the sake of simplicity, assume that the chain has a finite number of states
and that f,. > 0 for ¢ =1, 2, .-+, a. The @ X a matrix M will converge in
probability to M = [6;; — p.;], and T.(fi;), which is the (sr)th cofactor of ]rl,
will therefore converge in probability to the (sr)th cofactor of M. Since the sum
of the entries in each row of M is zero, the cofactors in row s are all equal to the
(ss)th cofactor | M, |, the determinant of the (¢ — 1) X (¢ — 1) matrix M,
obtained by deleting the sth row and column in M. By some elementary trans-
formations of M, , or by the identities between the cofactors and the elements
of a matrix (see, e.g., p. 109 in [3]) and the relationship between the principal
minors and the characteristic equation (see, e.g., p. 19 in [11]), we see that
| M, | = p.,. Hence, T.:(f:;) converges in probability to p.,. Q.E.D.

This result, concerning the asymptotic equivalence (under the assumption
H, of zero Markovity) of I, (f:; | f.7, f:) and P(fi; | f.;, fi.), implies that the
null hypothesis H, can be tested, within H;, by any asymptotic test of contin-
gency in the contingency table with cell entries f;; and with assigned marginals
f.; and f.... This implication follows from an application of the following lemma
proved in [4]: If (a) an experiment (with parameter N) has, for each value of N
(positive integers tending to infinity) a finite set F¥ = {F}} of possible out-
comes, (b) Py (or simply P) and Py (or simply P’) are two probability measures
over F" such that P'(F})/P(F?) converges in the probability P to unity, where
P'(FY)/P(FY) is regarded as a statistic whose distribution is determined by P,
and (c) S(F?) is a statistic whose cumulative distribution function ®y converges,
as N becomes infinite, to a limiting distribution ® under P, then the distribution
function ®y of S(FY) under P’ also converges to the same limiting distribution
®. This lemma can be applied, in order to obtain the desired implication, by
taking P(FY) = [P(fi; | £.i, £.) 1L (F.5, £)1, and PA(FY) =TI, (5, 6). Since
H, is assumed, P'(F{)/P(FY) = 1L.(f.;|£.5, f:)/P(fi;| f.;, f+.) will converge in
probability to unity. Since any asymptotic test of contingency in the contin-
gency table with cell entries f;; and with assigned marginals f.; and f;. will have
the same asymptotic distribution under P(fi;|f.;, fi.) (i.e., in the standard
case) as under P(F7) (since the f.;/N and f;./N converge in probability to p.;
and p.; respectively), it follows from the lemma that the same standard asymp-
totic distribution will also hold under P’(F?) (i.e., when H, is true).

Since the sequence obtained from the chain is finite, it will not provide esti-
mates of p;;, for all 7, 7, if the chain has a denumerable infinity of states (see [6]).
Thus, when @ = ., select (independently of the data) a finite subset of, say, b
states, and consider all states that are not included in this subset as belonging to
a single state;i.e., reduce the original number of statestob + 1 = &’ in the modi-
fied sequence. The tests of H,, suggested in this section for the case where a <
©, can be applied to the modified sequence consisting of a’ states, and the
results presented will hold also for this case, A rejection of H, for the modified
sequence would imply a rejection of this hypothesis for the original chain con-
sisting of denumerably many states. This general method is applied to some dif-
ferent hypotheses relating to Markov chains on p. 293 in [6].
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3. The n + 1-tuple and the n-tuple counts. Suppose that a sequence X,
X, - -+, X is obtained from a Markov chain of order n(n = 1), where the prob-
ability is pi; that X, = j, given that (X,—n, Xinp1, -+, Xet) = (61,45, -+ -,
i,) = 1. For the sake of simplicity, we assume that there are a states in this
chain; i.e., X, can take its value from among a possible values of 7. We define a
new sequence of random vectors Z; = (X1, Xo, -+, X,), Z, = (Xp, X3, -+,
Xat1), oy Zyenyn = (Xweny1, Xnont2, -, Xn) where each vector can take
its value from among the a” possible values of i. The probability pi: that Z, = f,
given that Z, ; = i, is equal to py,, for * = j/, where ¢* = (i, 43, - - -, 4,),
]‘ = (.71 7j2 y "7y jn—l)y t= (11 ) 'L*)) f= (j,’jﬂ)r and Pit is zero otherwise. The
sequence Zy, Zy, *+* , Zn_n41, 18 from a first order chain with constant transi-
tion probability matrix P, = [pii]. This chain has a” states; P, is an a" X a"
matrix (see [2]).

The frequency fi: of the 2-tuple (i, f) in the sequence of (N — n + 1) ob-
served Z’s gives the (n + 1)-tuple frequency fi;, in the sequence of N observed
X’s forall (i, I) where f = (2%, j,), and fir will be zero otherwise. In other words,
the frequency fi:,,, in the sequence of X’s of the (n + 1)-tuple (31, %2, - - , s,
ia41) 1 the number of values of ¢ for which (X, , X1, Xz, -+, Xign) =
(i, %n4i), .. the number fi of valuesof ¢for which Z, = (¢;, 43, -++ , 2,) = tand
Zi1 = f,for £ = (i* 7,41). Since fi: is the 2-tuple count in a sequence from 2 first
order chain, (3) can be applied to obtain the probability [ [:(fi:, 8) that the
(n 4 1)-tuple count in the observed sequence of X’s will be fi;, and that
Zy_ny1 = 8, given that Z; = r. We obtain

1L fit
8 e (fir, 8) = To(fur 1
( ) H (f 6) ’ (f )Hnyfu'IiIIpr‘

Hlfl I
= T i7y = To it le
®) L. (o, & = 760 19— I L e

where T's(f1) is the (8r)th cofactor of the a” X @™ matrix [ — fit/fi.] = M
This result could also be obtained by applying the BEST theorem to the ver-
tices t.

The probability Hr(fil) = JI.(f:;) of the (n + 1)-tuple count fi(j = 1,
2,---,a,and i = 1,2, ---, a"), given that Z, = r, can be obtained from (9),
by.applying (1) and (2) to the sequence of Z’s. Also, theprobability [ [.(fi:| 8) =
II: (fi; 18) of the (n + 1)-tuple count fi;, given that Z; = t and Zyonp1 = 8,
can be determined with the aid of (9) and the (N — n)th power of P, .

The distribution of the f.j will now be studied, when the sequence of X’s
is from a chain of order » — 1(n > 1). If the chain is of order n — 1 (within
the hypothesis H,), then pi; = p.s; for ¢;,5=1, 2, ---, a and for all "
values of 7*.

We define a new sequence of random vectors W, = (X2, Xz, -+, X,),
W2 = (X37 X4’ ] Xﬂ+l)) ) WN—’H—I = (XN—n+2’ XIV—"+3) ctty XN))
where each vector can take its value from among the a™ possible vectors ¢*.
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The probability pus;» that W, = j* given that W, = ¢* is equal to p.sj,
for I = j) where I = (’i37 i4: ] if), j = (j2’ j3) ] jﬂ—l): * = (’i27 I)7

= (J, Jn), and pa;« is zero otherwise. We have that psj = pir for 5, = 4,
and for all values of 7; , where i = (41, 7*) and { = (j1, j*). The sequence W,
Ws, «++, Wy_ny1 is from a first order chain with transition probability matrix
P._1 = [psj]. This chain has a™" states.

The n-tuple count f.: = g:in the sequence X, X3, - - - , X» can be determined
by the 2-tuple count g«; in the sequence of W’s. Also, gxjx = g for £ = (5,
7¥) = (4%, j»). For the n-tuple count h: in the sequence X,, X3, ---, Xn_1,
we have that ht = g¢ — 8. Since A: can be determined by the 2-tuple count
huwjx in the sequence Wy, Wy, --- , Wy_, from a first order chain, (3) can be
applied to obtain the probability [ [ (hms , ') that the n-tuple count in the se-
quence X, X3, -+, Xy will be hr and that Wy_, = &, given that W; = r*,
The probability II.- (g:, 8) that the n-tuple count in the sequence X, , X, - - -,
Xy will be g¢ and that Zy_,41 = 8, given that Wy = r*, is simply ][ (hsje

§')p.srs,. Thus,
(10) 11 (g:, 8 = [T (h,*,,)( )] [IIIL Z, I}Hp”' ]

where gr = he + 61s.
The (n + 1)-tuple count in the sequence X;, X;, ---, X» can be denoted
. J
by f,','tj or f{j'j , where ¢* = 7. AlSO, Zifﬂ'*i = f.,'*j = f.y = gi = @i+ and
2oGimi = G = D fois = 2D ifins = fom,

where i = (4, 4*) and f = (', 7). Thus the probability J]: (f.«+;, 8) that
Z fw* = 1“1
and that Zy_,,1 = 8 given that Z, = 1, is

@ LG = [ 2ot (72) [T 50T

where 8 = (s, s). Therefore, if the chain is of order n — 1, the conditional
probability of the (n 4 1)-tuple count fi; = fin;, given the f..+; and 8 and T,
is obtained by dividing (9) by (11); i.e., [L¢ (fi; | f.or;, 8) is equal to

o e Gl

(We can assume, without loss of generality, that the f.»; and 8 are such that
I1: (f.+;, 8) > 0.) The second factor in (12) is

I Pa(fini | fosiy fiin) = P(fiws | foins , fim),

the product of the probabilities of the cell entries fix; in an @ X a contingency
table (for a given (n — 1)-tuple ¢*), with assigned marginals f.;+; and fi. ,
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where in each table the two attributes described by the table are independent;
i.e., the joint probability of the cell entries fi; for all " independent con-
tingency tables.

It can be seen that (12) is also the conditional probability

II: (fiwi | foorsy fiond)

of the fix;, given the f.»;, fis., and t; it is also the conditional probability
1I: Gins | fxi, 8) of the (n + 1)-tuple count fi«;, given the n-tuple count
Sfixj,and v and 8.

From (12), we have that

09 [t (f)] - el bt

We shall now prove that the statistic (13) converges in probability to unity
(thus To(fir) and T, (hisjs)(f-srs/f.or.) are asymptotically equivalent, and

Ht (ft'i‘i lf'i‘j ’ f!'i*-)

and P(fix; | f.e+5, fim.) are also asymptotically equivalent), if the chain is of
order n — 1.

If the chain is of order n (a chain of order n — 1 is also of order n), we saw
earlier that a first order chain could be defined with transition probability ma-
trix P, = [pu], and we shall assume that the asymptotic occupation proba-
bilities p: for this first order chain are all positive; i.e., pr > 0, where p: is such
that D¢ i = p: for all £. This will be the case if the chain described by P,
is irreducible, (positive) recurrent and aperiodic (see, e.g., [6] and [7]). (If p: =
0 for some f, the methods developed in the present paper can be modified in a
straightforward manner to obtain analogous results (see [2]).) If the observed
sequence is from a chain of order n — 1, then the occupation probability p, =
pi'p-ij , Wherel = (§’, 7), and p; is the asymptotic occupation probability for the
first order chain with transition probability matrix P,_; = [pieje]. (Lemma 1 in
[6] gives a somewhat different, but related, result for chains with denumerably
many states.) Since []: (f.is, , 8) > 0, then p.,,, > 0 where 8 = (¢, s), and
fsrs/f.s. Will converge in probability to p.,., . Thus, it will be necessary to prove
only that T(fir)/ T, (hixjx) also converges in probability to p..., .

We have that T(fir) is the (8t)-th cofactor of the matrix M, , and Ty (hisss)
is the (s'r7*)th cofactor of the matrix [0 x — huju/h.] = M.._; . These matrices
will converge in probability to the a” X a” matrix M, = [6ir — pi and the
a”™ X a" matrix M,_; = [8ij0 — Puje] respectively, and T(fir) and

Tor(hinjs)

will converge in probability to the (8r)th cofactor and the (s'7*)th cofactor of
M, and M, ; respectively. Since in each matrix the sum of the entries in each
row is zero, all the cofactors in row 8 of M, are all equal to the (88)th cofactor
| M,,s| of M, , and the cofactors in row s’ of M,_; are all equal to the (s’s’)th
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cofactor | My, | of M,_;. Therefore, it will be necessary to prove only that
| Mﬂ.ﬂ | = l Mn—l,s’ I D-s's -

We have that M, = I, — P, , where I, is the a” X " identity matrix and
P, is the transition probability matrix for the first order chain for the Z’s. We
order the states i = (s, ¢*) of this chain recursively as follows: (1, ¢*) = 17%,
(2, 3*) = 2i*, -+, (a,7*¥) = as* for¢* = 1,2, --- , """, obtaining a numbering
of i from 1 to a”. Since pir = p.ss; for j/ = ¢*, and it is zero otherwise, we have
that

Py Py - P,
19 p _|P1 P2 o P,
Py Py --- P,

where P.; is the a”™ X "' matrix [jpsj] With jpsj = pws for 4 = j, and
iPirsr = 0 for iz 5% j, for all j* and 7. Hence P, consists of a block columns

[P'f’P'J')"')P'J']I forj=1,2,~~,a;

it also consists of a block rows [P.,, P, :--, P.,]. We have that | M, .| is
the determinant of the (a® — 1) X (a" — 1) matrix M, obtained by deleting
the row and column relating to state 8 = (s;, s*), the s;s*th state in M, ; ie.,
column s* within the sth block column [P, , P, , -+, P.,] and also row s*
within the s;th block row [P.;, P,, ---, P.,)], and the corresponding column
and row in the identity matrix. Let P”,, be the ™ X ™ matrix obtained
by replacing the s*th column in P.,, by a column of zeros. By some elementary
transformations of the matrix M,,., we find that | M, | is equal to the de-
terminant | M | of the a®™ X o matrix M = I, — [Djx P.; + Ph].
Thus, it is necessary to prove only that | M | = | M,_1,¢ | p.s . It can be seen
that the only distinction between M and M,_, is that the term p.,., appearing
in row &' and column s* of M,_; is replaced by a zero in M. (If s* = &, then
the term 1 — p.y, is replaced by 1.) Thus, each cofactor in the s’th row of i
is equal to | M, 1, | . Since the sum of the entries in row s’ of M is

1 — 2,‘*,‘3* Ps'j* = P.s’s,

we have that p..s | Maw | = | M |. QE.D.

This result, concerning the asymptotic equivalence, under the assumption
Hay, of I1c(fimj|fooni, fies) and P(fis; | foors, fir.), implies that the null
hypothesis H,_, can be tested, within H, , by any asymptotic test of contin-
gency in the o™ ordinary @ X a contingency tables with cell entries fi»; and
with assigned marginals f.;; and fis. .

4. The m-tuple and the n-tuple counts (m > n). Let « be the (m — n)-tuple
(Z1,%2, -+, tmn) and I the (n — 1)-tuple (Gm—ni1, tmnsz, *** , m_1). Denote
the m-tuple count in the sequence X, , Xz, - -+, Xx by furj. Then D ; fur; = fur.
is the (m — 1)-tuple count for the sequence X1, Xz, -+, Xv_1, and X, fur; =
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f.1; is the n-tuple count for the sequence Xpni1, Xmniz, -, Xn. Let
II: (fixs | fs s ©

be the probability that the m-tuple count will be f.;;, given that X, fu; = f.1;
and (X1, Xy, -+, X)) = rand Xy-miz, Xn-miz, -, Xn) = 8. If m =
n + 1, the results in Section 3 give the formula for this probability. If m =
n + 2, then J]: (fu; | f.1i, 8) is equal to

[Ht (fiIJ' lf‘izli ) 5)I-I' (f“zli 'f'IJ' ) 6)]
the first factor is the probability that the m-tuple count will be f.r;, given that
D fiai= fuand (X1, Xo, -+, Xma) = t and (Xv_my2, -+, Xn) = 8;
the second factor is the probability that the (m — 1)-tuple count in the se-
quence Xp, X5, -+ -, Xy will be f.;,1;, given that Y i, fos1; = foxj and

(leX27 e 7Xm—1) =1
and (Xy_msa, +++, Xny) = 8. If the chain is of order n, the results in Section
3 indicate that the first factor is asymptotically equivalent to

15) H {I:lIfu !I’If-izn' '/1;-11 I]Ifm' foipre !}5

19l

if the chain is of ordern — 1, the second factor is asymptotically equivalent to

(16) 1I {I;zlf.i,l !Iij.I,- !/1} Il fans 101},

since it can be shown from the derivation of (12) that J]. (feigri | fori, 8) is
asymptotically equivalent to T+ (Fiari | fi1i, s*), where 8 = (s;, s*) and
t = (r1, r*). Thus, for chains of order n — 1, []: (fir; | f.rj, 8) form = n + 2
is asymptotically equivalent to the product of (15) and (16); viz.
a7 I;I.{Hf-‘L!HfJJ'!/Iijm‘ !f'l-!}o
% i [

In the general case where m > n, by repeated application of the preceding

results for m = n + 1 and n + 2, we find that, for chains of order n — 1,

Hl‘ (ftl)' 'f'lj ’ 5)
is asymptotically equivalent to (17), the product of the probabilities

Pr(faj| fai, fur)

of the cell entries f.;; in a contingency table (for a given (n — 1)-tuple I) con-
sisting of a columns (j = 1, 2, --+, @) and a™7" rows (the a™ " values of 1),
with assigned marginals f.r; and f.;. , when in each table the attributes described
by the table (there are a™ tables) are independent. This result implies that
the null hypothesis H,; can be tested, within the hypothesis Hn—y, by any
asymptotic test of contingency in the ¢ ordinary @ X @™ " contingency
table with cell entries f.;; and with assigned marginals f.;; and f.;. . These tests
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will have a* (@ — 1)(@™™™ — 1) = (@™ — a")(a — })/a degrees of freedom
(see [1] and [8]).

6. The circular counts. It was shown in [4] that, for zero order chains, the
probability 11 (Fi,..os | Fiyoi) of & specified m-tuple count f;...;, in a circular
sequence, given the n-tuple count f;.....,(n < m), is

(18) C(Fiyein)) T Fireooin VO (Firesn) T Figernin !
ifn > 1, 0r
ClFoprin)) IIFe /(N — 1 1 Fionn b ifm =1,

where F* = [f;,...;,] is the incidence matrix of the graph (see [4]), and C(M) is
defined in Section 2 here; (18) is valid for chains of order n — 1 or less. In the
special case n = 1 it was proved in [4] that the statistic (18) is asymptotically

equivalent to [ ] fi,.ooip, ! T 7 /N1 IIFipoi,, 1, the probability

P(f"‘l""’m l f”l""’m—l b f‘)
of the cell entries ..., in a contingency table with assigned marginals f;,....,,_,
and f; . This result for the special case n = 1 will now be generalized to the

casen = 1.
Let us first consider the case where m = n + 1. We can write

19) F = D(Jyy .. 1) I:au - i‘_']
fu

where i = (&1, %2, -+, @), fir is defined for circular sequences in the same
way as fir was defined in Section 3, and D(f;,...;,) is the a” X a” diagonal ma-
trix where the entry in row i is fi. We shall assume that no row or column
consists wholly of zeros. The common value | 5, | of the cofactors of F5 can
be obtained by determining the (ii)th cofactor of D(f.), which is ][] +.:f:, and
also the (ii)th cofactor of [6ir — fi¢/fi.], which converges in probability to the
(it)th cofactor | M, | of M, . From the results in Section 3, for the case where
the chain is of order n — 1, we see that | M,,| = | Mp—1,# | D.srs, Where i =
(¢, 5). Thus | F% | is asymptotically equivalent to ] eci ft | Mas,ir | Fori/Fe .
Also, the (¢/#')th cofactor | Fa_s» | of Fa_, is asymptotically equivalent to
Tlisse fio | Mos,o | . Hence, | Fu,i|/| Fa_1,# | is asymptotically equivalent to
I1:7:/I1 7, and C(F%)/C(Fx_,) is asymptotically equivalent to

ILefe /170t

Therefore, if the chain is of order n — 1, (18) for m = n + 1 is asymptotically
equivalent to

(20)

L7 I e _ H[Ha‘xfhi*_lnifm !:I
i I I Fet 5 LI I Fougmi 1 vt

the product of the probabilities Pj(f;,jx; | i+, fi+;) of the observed cell en-
tries f;,7+; in an ordinary a X a contingency table (for a given (n — 1)-tuple



EXACT PROBABILITIES AND ASYMPTOTIC RELATIONSHIPS 489

7*), with assigned marginals f;,;» and f;»; (we have that D, f;,5; = fije =
E ifiiie = F.quir = Firr), Where in each table the two attributes described by
the table are independent.

This result, concerning asymptotic equivalence in the special case m = n + 1,
can be applied repeatedly to obtain a general result for the case m > n, as
was done in Section 4. Thus, if the chain is of order n — 1, the statistic

H (f"x“"m ]fil"'in)
is asymptotically equivalent to

Hf"fy--im_ I ! _ I [H‘f.x I !:I
 § wa--m_l t LIL I f 1

where . = (Zl s B9, * - , ’L.m_n), I= (im—n+l 5 im_n+2 y Tty im_x), T = Tm. Hence,
any asymptotic test of contingency in the ™ ordinary @ X a™ " contingency
tables (a table for each (n — 1)-tuple I) with cell entries fiyein » and with as-
signed marglnals fies,_, and fi_, +1-e-im (€., Jiyei,), can be used to test the
null hypothesis H,_; within H,._; . The degrees of freedom are as in Section 4.

The reader will note that, in this and the preceding sections, each m-tuple
was “split”’ into an (m — n)-tuple ¢, an (n — 1)-tuple I, and a 1-tuple ¢; thus
obtaining ™' contingency tables, each a X @™ ™. It is possible to split each
m-tuple into an (m — n — r)-tuple, an (n — 1)-tuple, and a (1 4+ r)-tuple
(0 = r £m — n — 1); thus obtaining o™ contingency tables, each o't X
a™ ", For r = m — n — 1, the m-tuple is split into a 1-tuple, an (n — 1)-
tuple, and a (m — n)-tuple; the a”* contingency tables obtained will differ in
general from the a™ " tables obtained for »r = 0. However, for circular sequences,
the product of the likelihood ratios (for testing independence in each table) for
the @™ tables obtained when r = m — n — 1 will be equal to the correspond-
ing product for the tables obtained when » = 0. For linear sequences, the corre-
sponding products when » = m — n — 1 and r = 0 will be asymptotically
equivalent, under H,_, . Both these products are asymptotically equivalent to
the likelihood ratio for testing H,_, within H,_; . Similar remarks could be
made about other statistics (e.g., the x* statistic) used to test independence in
each table. If the o™ separate tables were of interest, the choice between

= 0orm — n — 1 would depend on the alternate hypotheses within H,,_,
that were in mind.

For0 = r =< m — n — 1, it can be shown that the asymptotic mean value
of the product of the likelihood ratios (when normed in the usual way) is equal
to a~ (g™ — 1)(a'* — 1), under H,,. This statistic is not equivalent to
the likelihood ratio for testing H,_; within H,_,, unlessr = O orm — n — 1.
Also, the asymptotic distribution, given H,—_,, of this statistic is not x? unless

=0orm —n — 1.For0 < r <m — n — 1, the asymptotic distribution,
given H,_,, of this statistic is that of a weighted sum (with unequal weights)
of x? variates; in this case, the analysis of the a*! separate contingency tables
is not in general as simple and straightforward as whenr = O orm — n — 1,
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since the usual methods of analysis of contingency tables cannot be applied to
this case. This case will be discussed more fully in a later publication by the
present author.

6. The exact probability formulas. An illustration will now be presented to
indicate the difference between (12), (18), and the formula suggested in [4] for
the probability of the specified m-tuple count, given the n-tuple count, in a
linear sequence. Consider the special case a = 2, n = 1, m = 2, N = 5, and
fu = O, f[z = 2, le = 1, fzz = 1. Thus f[. = 2, fz. = 2, f~l = l,f.z = 3. From
(1), we see that r = 1, s = 2. From (6), the probability of the specified 2-tuple
count f;; , given the l-tuple count f.; and f;. and r, is 2/3. The circularized 2-
tuple frequencws are fu = 0, fiu = 2, fu = 2, fu = 1. From (18), the prob-
ability of the f;;, given the f;, is 1/2. Using the approach suggested in [4] of
applying (18) to the augmented circularized sequence, the probability of the
specified 2-tuple count fi;, given the l-tuple count.f;, is 1/5; this approach
yields a correct answer only if the chain is stationary. By listing all possible
sequences for ¢ = 2 and N = §, the reader will see why different numerical
results are obtained for the different probabilities.
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