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General Remarks. Consider the case where there are r instead of 2 response
classes. Then it is convenient to regard the r probabilities p;, - - -, pr as a nor-
malized column vector, p. With £ possible events, there are ¢ corresponding linear
operators, which can be represented by ¢ r X r stochastic matrices, My, - -+,
M;,---, M,. Then, the value of the vector p at the k + 1st trial, after the
occurrence of event E; , is given by M ;p, where p; is the value of the vector at
the kth trial. Under the assumption of combining classes, T'; may be written as
M; = a;l + (1 — a;)A; where I is the r X r identity matrix, and A;isanr X r
matrix in which all columns are identical, and the r entries are denoted by
A2, oo AP, Tt is then readily shown that the commutator of M; and M is
the vector: w = (1 — a:)(1 — a;)(A; — Aj;)*. The last term (A; — A;)* is any
of the r identical column vectors of the matrix (A; — Aj). It is now necessary
to find f such that f(Mp) = T:f(p) and such that T.T;f(p) = T;T:f(p), where
f(p) denotes the column vector with elements f(p1), - - - , f(pr). The theorem goes
through as before, these conditions being satisfied if and only if f is periodic with
f(p) = f(p + w), where u is the commutator vector defined above. The determi-
nation ef conditions under which f has an inverse is a somewhat deeper question.
For the present, it is sufficient to remark that if the gth component of pi is
bounded by A, and B, for some ¢ < r and f is monotone in [4,, B, then f
has an inverse in that region, and the values of this gth component on successive
trials can be used to estimate the parameters. ‘

Returning to the case of r = 2 and ¢ = 2, it appears that for a given @; and
Q. half the commutator u/2, gives a measure of the largest set of values of p on
which it is possible to find a 1~1 mapping f such that the induced transforma-
tions T; and T» commute. At the same time, x also gives a measure of the fraction
of the interval [0, 1] on which the commutativity of @ and @; fails to hold.
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ADDENDA TO “INTRA BLOCK ANALYSIS FOR FACTORIALS IN TWO-
ASSOCIATE CLASS GROUP DIVISIBLE DESIGNS™*

By Rarpu ALraN BraprLey AND CrypE Young KRAMER
Virginia Polytechnic Institute

1. Nair and Rao [1] in a very fundamental paper discussed confounding in
asymmetrical (asymmetrical in the factor levels) factorial experiments. They
gave a general formulation of the combinatorial set-up for balanced confounded
designs, assuming their existence, of asymmetrical factorial experiments and
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showed how to construct some optimum designs for two-factor experiments
with some extensions to three and four factors.

Requirements for balanced confounded designs of asymmetrical factorials were
set forth. Using their notation, we let (¢, - - - , 7,) be the treatment combina-
tion with the 7;th level of factor ', , ¢t = 1, - - - , m, F, having s; levels. There are
v = ]I s: treatment combinations to be arranged in b blocks of k experimental
units with no treatment combination on two units of the same block. Require-
ments for balanced confounding were:

(i) Every treatment combination is replicated r times.

(ii) The treatments (21, - - , 2m) and (j1, - -+ , jm) occur together in A, ...,
blocks where k; = QO or 1 as 7, = j, or 7, # j:.

Nair and Rao discussed two-factor experiments in detail showing the estima-
tion of treatment differences, efficiency and amount of information, and tests of

significance.

2. Nair [2] in a short paper in 1953 showed that the earlier work of Bose and
Connor [3] on group divisible, partially balanced, incomplete block designs
with two associate classes could be regarded as a special case of the analysis
for confounded asymmetrical factorial experiments with two factors. Also, he
showed that designs constructed by Nair and Rao correspond to designs of the
semi-regular class of group divisible designs typed by Bose and Shimamoto [4].

3. Kramer and Bradley [5], using group divisible designs catalogued by Bose,
Clatworthy, and Shrikhande [6], showed how factorial treatment combinations
may be used in these designs and presented the straight-forward least squares
derivation of the intra-block analysis for such experiments. This essentially
completes the cycle. The discussion of confounding in asymmetrical factorials
is the most general of the papers; the factors could be regarded as pseudo-factors
to derive the analysis for non-factorial treatments in the two-associate class
group divisible designs. Finally, the treatments in the group divisible designs
were .replaced by factorial treatment combinations to produce confounded

asymmetrical factorials.

4. Analyses for the basic two-factor factorial in [5] could have been based on
the work of Nair and Rao [1] and Nair [2]. The association of notation (the
Bradley-Kramer notation followed by that of Nair and Rao), where notations
differed, is as follows:

M, 823 M, 8135 A, Mo s A2, Ao = A ; W+ k= 1)k pu = D
mnXeo/k, D ; Qi , Q(, 5);
tij, 1, 7);  A-factor, Fo-factor;  and C-factor, Fi-factor.

The association of notations leads to equivalences of results. In the order as
before, Table 1 corresponds to Table 2, variances of effects in (5.22) and (5.23)
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with (3.23) and (3.22), and efficiencies (5.27), (5.28), and (5.29) with those
indicated on the bottom of page 113 of [1].

6. We are indebted to K. R. Nair for drawing these matters to our attention.
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It has been called to my attention that the results in my note ‘A ¢-test for
the serial correlation coefficient’ (Ann. Math. Stat., Dec. 1957) duplicate re-
sults obtained by M. H. Quenouille in ‘Approximate tests of correlation in
times-series 3’ (Proc. Cambridge Phil. Soc., Vol. 45, part 3, 1949). I wish to
acknowledge the priority of Prof. Quenouille’s results which were inadvertently
overlooked.
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CORRECTION TO “ON THE POWER OF CERTAIN TESTS FOR
INDEPENDENCE IN BIVARIATE POPULATIONS”

By H. S. KoNun

. 304, line 13: like the left-hand side, the right-hand side is a function of n*.

. 305: beginning with the word ‘‘exists’’ Theorem 1.2 should read the same
as Theorem 1.1, except that the exponent changes from 1/h to 1/hp*.

. 306, line 1: change “of’’ to “at’’.

. 309, line 3: insert ‘‘if p exists,”’ preceding the expression for ER, .

. 309, last line of section 1: for ER, = 0 read ER, — 0.

. 309, line 8 of section 2: change ‘‘consist merely of’’ to ‘“contain’’, and ‘“‘or’’
to “plus’’.

. 309, line 3 from below: change A to A — {A°}.
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