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and without any zeros. Hence applying Theorems 2.1 and 2.2, it follows at once
that each of the factors ¢;(z) is also an entire characteristic function of order
not exceeding two and without any zeros in the complex plane. Then the proof
follows at once, using the factorization theorem of Hadamard to each of the

factors ¢;(2).
In conclusion the author wishes to express his thanks to Professor Eugene

Lukacs for calling his attention to the paper by Dugué [3].
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BOUNDS FOR MILLS’ RATIO FOR THE TYPE III POPULATION
By A. V. Boyp

University of the Witwatersrand

1. Introduction and summary. Cohen [1] and Des Raj [2] have shown that in
estimating the parameters of truncated type III populations, it is necessary to
calculate for several values of « the Mills ratio of the ordinate of the standard-
ized type III curve at z to the area under the curve from x to «. Des Raj [3]
has also noted that for large values of z the existing tables of Salvosa [4] are
inadequate for this purpose and he has found lower and upper bounds for the
ratio. The object of this note is to improve these bounds, by obtaining mono-
tonic sequences of lower and upper bounds through the use of continued frac-
tions.

2. Approximations to the ratio. Taking the type III population in the stand-
ardized form

IIA
Q
I\

C{(x) dxz, —2/a £ x £ >, 0 2,
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where
2)_1
az) e el

f (x) = (1 + 5
and
C = (4 /a2)(4/a2)—1/2e—4/a3[1-|( 4 /a2)]—-l’
Des Raj [3] puts

6@ = [ foa  amd  u@ = 12/6)

and obtains
22+ 2
- = =< .
etz S mramror—s
However, by making the substitution o’ = 2(af + 2) in the integral for G(z),
we find

-]
G(z) = a'™™ f e " d,
X

where
a=4/d and X =a+ o'

Now, by Wall [5] equation (92.9),

w_,,a_l _ —Xvyua 1 1—a 1 2—a 2 3—a 3 .
[ ewta = Xa{X+ I+ X+ I+ XF 1+ X+ }

for all @ if X > 0. On substituting and simplifying it is then found that for
z > —2/a,

_ pyf 1l l—al2-a23-a3
1/ute) = X{ﬂ I+ X+ 1+ X+ I+ X+ }

The approximants to the continued fraction on the righthand side lead to ap-
proximations to u(z). The first seven of these are

4

@) = 222" + 4oz + o 4 2)
" (o + 2)@ +30)

2(22° 4+ 6az + 2 + 3d°)
207 + (5a2 + 4)z + 10a + o’

@) = 2(42° + 180z’ + 6(2 + 3d)z + 3’ + 14a)
Ho M) = (ax + 2)(d2* + 16az + 11a? + 8)  ’

(@) = 8(s" + 602’ + 3(30" + 1)z + 34" 4 50)
K1 daz® + 2(11a2 + D2 + 26a(a + 2)7 + 3a* + 520 + 16

It should be noted that us(x) is Des Raj’s lower bound for u(z). By elementary
algebra it can be shown that u;(x) exceeds us(z) for all relevant « and x; and

ps () =
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TABLE I
Values of u.(x) whena = 4,a = 1
x n2(x) na(x) pe(x) wi(x) = p(x) ws(x) 1 (x) [Py 2ax2+ Py g
—.50 0.000 0.500 0.667 0.692 0.714 1.000 0.869
.00 0.500 0.800 0.894 0.901 0.909 1.000 1.000
.50 0.800 1.000 1.057 1.059 1.062 1.100 1.117
1.00 1.000 1.143 1.180 1.180 1.182 1.200 1.215
1.50 1.143 1.250 1.275 1.275 1.276 1.286 1.298
2.00 1.250 1.330 1.351 1.351 1.351 1.357 1.366
2.50 1.330 1.400 1.413 1.413 1.413 1.417 1.423
3.00 1.400 1.455 1.464 1.464 1.464 1.467 1.472
3.50 1.455 1.500 1.507 1.507 1.508 1.509 1.513
4.00 1.500 1.538 1.544 1.544 1.545 1.545 1.549
TABLE II
Values of u-(x) when a = 16/9, a = 1.5
E pa(x) () pa(x) w(x)
—.50 0.400 0.800 0.842 1.333
.00 0.750 0.944 0.960 1.333
.50 0.909 1.024 1.032 1.333
1.00 1.000 1.076 1.081 1.333
1.50 1.059 1.114 1.116 1.333
2.00 1.100 1.141 1.143 1.333
2.50 1.131 1.162 1.163 1.333
3.00 1.154 1.180 1.180 1.333
3.50 1.172 1.193 1.194 1.333
4.00 1.188 1.205 1.206 1.333

Further, for z = 0, s = 0.9523, uo = 0.9504, and ur = 0.9515.

that, for all relevant « and for £ > max (0, 2/a — 2a), p(z) is less than Des

Raj’s upper bound.

3. Convergence of the approximants for integral a. We suppose henceforth
that x > —a/2. (All the inequalities to be derived appear to hold over at least
part of the range —2/a = z £ —a/2, but as we are interested only in large
positive x we shall not worry to extend their range of validity.) If ¢ = n then
X+7—a= 2z + ta)/a>0forz=1,2, 3, ---and

1 —a <0
=0

Hence, by considering the approximants to

1 1—a 1 2—a 2

for ¢
for ¢

I

lton — 1,

X+ 1+ X+ 1+ X+
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it is easily verified that u;(x), we(x), - - - , uz._1(x) satisfy the inequalities
pe pg < pg <K i < v < p < v <y < ug < s < g < g™

pen—1(z) is of course equal to u(x) since the (2n)th partial numerator of the con-
tinued fraction vanishes. The rapidity of the convergence of the sequence u,(x)
in the case @ = 4 is indicated by Table I, where Des Raj’s numerical bounds
[3] are included for comparison.

4. Convergence of the approximants for non-integral a. If n < a <n + 1
then X +7—a > 0fori=1,2,--- and

g <0 for i = 1 ton,
¢ >0 fori=n+1,n+2---,

so that w(x), - - -, pe(x) satisfy the same inequalities as in the case of integral
a, while py,1(2), peasa(2), wants(®), <+ - and wen(x), pensa(t), wanis(x), - - - form
monotonic sequences approaching u(z), one from above and the other from
below. Thus if 2r — 1 < a < 2r then we have

e < pg < pg < < o0 < pgre10 < i < Yo < Uar—g
< pgrs < ptr < pgrge < 200 < p.< ove < pgrgn < g < fgr—3
‘ < g < ey < pgrg < vve <pg < g < g < pg <

and if 2r < @ < 2r + 1 then

pe < g < pg < pp < v < pgrg < parg < Mar—z < Mar—1
< pgrpr < pgrgz < o0 < p < voe < psrs < parge < par < Pars
< ptrg < pary < pgrg < oo <pg < g < pp < pa < g

Table II indicates the rapidity of the convergence of u. in the case a = 16/9.
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