ON BALANCING IN FACTORIAL EXPERIMENTS!

By B. V. SHan
University of Bombay

1. Introduction and Summary. R. C. Bose [1] has considered the problem of
balancing in symmetrical factorial experiments. In all the designs considered in
that paper, the block size is a power of S, the number of levels of a factor. The
purpose of the present paper is to consider a general class of designs, where a
‘complete balance’ is athieved over different effects and interactions. It is proved
in this paper (Theorems 4.1 and 4.2) that if a ‘complete balance’ is achieved over
each order of interaction, the design must be a partially balanced incomplete
block design. Its parameters are found. The usual method of analysis (of a
PBIB design [2]) which is not so simple, can be simplified a little for these designs
(section 5), on account of the balancing of the interactions of various orders. The
simplified method 6f analysis is illustrated by a worked out example 5.1. Finally,
the problem of balancing is dealt with for asymmetrical factorial experiments
also. Incidentally, it may be observed that the generalised quasifactorial designs
discussed by C. R. Rao [4] are the same as found by the author, from con-
siderations of balancing.

2. Some lemmas regarding C-matrix and orthogonal contrasts. Let there be v
treatments replicated r, ., - - - , 7, times respectively, in b blocks of k plots each.
Let n;; be the number of times the {th treatment occurs in the jth block; (7 =
1,2, -+ ,v;5 = 1,2, --- ,b). Then N = [n,;] is the incidence matrix of the
design. It is assumed that every n,; is either zero or one. The set up assumed is
that the yield of a plot in the jth block having the sth treatment is u + a; + ¢; +
e;; where u is the over-all effect, a; is the effect of the ¢th block, #; is the effect of
the jth treatment and e;; is the experimental error. e;;’s are assumed to be in-
dependent normal variates with zero mean and variance ¢°. Let Q: be the ad-
justed treatment yield (adjusted for block effects) of the ith treatment, and
£; be a solution for #; of the least square equations. Let Q, t and t denote the

column vectors (Q;, Qz, - -+, Q.), (ti, b2, + -+ ,t,),and (4, &5, -~ - ,£,) respectively.
It is well known that

(2.1) Q =Ct

and the variance-covariance matrix of @ is

(2.2) o’C.

where ‘

(2.3) C = diag (r1,72, *++ ,75) — %NN',
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diag (ry, 72, ---, 1) stands for a diagonal matrix, with diagonal elements
T1yT2y * 0 3Ty,
If I'1 = 1, the contrast I't will be called a normalised contrast.
Lemma 2.1. Let Iit, It, --- , L_it be v — 1 estimable normalised orthogonal
contrasts (/s are v-vectors), such that
(2.4) V{iR) = o*/6;
(2.5) Cov (1it, 1;t) = 0 i
then (i) the C-matrix defined in (2.3) is given by
v—1
(2.6) C =2 6,11
q=1

(ii) Estimate of it is given by
(2.7) it = 1:Q/6..

Proor. Let E .., denote an m X n matrix, all the elements of which are unity and

1 1
(2.8) [ll l 12 l e lv—l \7}*— Evl] = [Ll W Evl] = L,
then
(2.9) LL = I, = L'L,

where I, denotes a'v X v identity matrix. From (2.1) and (2.9) we have

Q = CLLA%.

(2.10) "
L'Q = L'CL(L't),
but
(2.11) E.Q =0 and E,C = O;
hence (2.10) reduces to
(2.12) LiQ = L;CLy(Li}).
From (2.2) it follows that the variance-covariance matrix of L{Q is
(2.13) LiCL, o*.

By hypothesis each of lit --- lL_it is estimable, therefore (L;CL;) must have
rank v — 1. Hence its inverse exists.

(2.14) (Lif) = (LiCL)"'L'Q
and.
(2.15) V(Li) = (LiICL) ™",

Comparing with (2.4) we have

’ T 11 . 1
(2.16) (L CLy) ™ = diag (@—1 R , 0:)
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(2.17) LiCL, = diag (61,602, -+ , 6u_1).
(2.11) and (2.17) imply that 61, 62, - -, 6,10 are canonical roots of C, and
L, Y, ---, L, (1//) E, are corresponding canonical vectors. Hence C is
given by

v—1
(2.18) C =2 0,11

q=1

Also from (2.14) and (2.16) it follows

2.19) L.t = diag ((;'1 , ;_2 o 0:__—1)L{ Q.
This proves (2.7).

LeMMA 2.2. In case some of the 8’s tn Lemma 2.1 are equal say 6, = = - - - = 6,
= 0, then there will be infinitely many sets of normalised orthogonal veciors corre-
sponding to the canonical root 0. The variance-covariance matrix of conirasts
corresponding to any such set will be

[
71,
0
and representation of C as given by Lemma (2.1) is unique; ie. if L, ---, 1, ;
and ny, --- , 0, are any two sets, then
Zl,l: = Znin:-.
=1 =1

The proof follows easily from observing that
(2.20) [ng|ne| - |n] =[M|L]---[L]-A,
where A is an r X r orthogonal matrix.

3. Definition of ‘complete balance’. In a factorial experiment with m factors

Fy,F,y, -, Fneachat S levels, if the treatments are denoted by (z1 2, « - , Zm)
where z; is the level of ¢th factor (x; = 0, 1, 2,---- , S — 1); then a contrast
3 Cay zgroee s oy (@12, -++ , Twm) (Summation is over all zy a2, -+, Tm) be-
longs to (¢ — 1)th order interaction between the factors Fj, ,Fj,, -+, Fj,,
if Czyeps e »2n depends only on z; , xj,, --+, z;, and Y Carzgs oov s 2m s

summed over the levels of any one of these ¢ factors, is zero.

Bose [1] has defined balance over a particular order of interaction in symmetric
factorial experiments. In general, that definition is not interpretable, e.g. when
a number of levels S is not a power of a prime, or the block size is not a power of
8. So a more general definition is necessary.

DerFINITION 3.1. We shall define that a ‘complete balance’ is achieved over a
set of n normalised orthogonal contrasts Iit, - - -, 1Lt if and only if the variance-
covariance matrix of their estimates is
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0_2
7 L.

DEFINITION 3.2. A more obvious definition of ‘complete balance’ over a set of
vectors or contrasts represented by them is that every linear combination of
these vectors giving a normalised contrast is estimated with the same variance

2
say o /6.

TueoreM 3.1. Two Definitions 3.1 and 3.2 are equivalent.
We will now say that complete balance is achieved over (¢ — 1)th order of

interaction; if a complete set of <7Z) (8 — 1)? normalised orthogonal contrastshas

variance-covariance matrix (o°/6,) I, or if every normalised contrast belonging
to the ¢ factor interaction is estimated with the same variance /0, .

4. Balanced factorial designs and PBIB. Let there be m factors each at S

levels in a symmetric factorial experiment. Let L, be 8™ X <7g> (S — 1) matrix

formed by a complete set of (7;> (8 — 1)? normalised orthogonal vectors forming

¢ factor interactions with the variance of the estimate of any normalised contrast
belonging to a g factor interaction equal to o”/6, ;¢ = 1,2, - - - , m. Further let us
assume that the covariance between the estimates of any two contrasts belonging
to the ¢th and the jth (z 5 j) orders of interactions is zero.

From Lemmas 1.1 and 1.2 C is uniquely represented and given by

(4.1) C=>06LL,
g=1
which can also be written as

(4.2) c=[2‘,0q %,-], 47 =1,2 - ,8"
q=1
where f%; is the element of L,,L; corresponding to ¢th row and jth column.
Let the sth and jth treatments be (z,22, * -+ , Tw) and (Ys,Yz, -+ * , Ym) TESPEC-
tively, and let
(Oyoy 70) and (070) 70717 1) ,1)

P times (m—p) times

be the rth and sth treatments respectively. In the ¢th and jth treatments suppose
exactly p factors occur at the same level. Say i, = yiy, Tiy = Yipy
%y, = Yi,, and rest of the x,’s are not equal to the corresponding ¥;’s. Now in-
terchange the levels z;, @z, - - - , T» with zeros, i.e., in any treatment if the 4th
factor occurs at level z; replace it by zero and if it occurs at level zero replace
it by z; . Perform this change for all the treatments. So naturally yi, , ys,, =+,
yi, will be changed to zeros. Now in the same manner as x.’s, interchange the
remaining levels y’s with ones. After these interchanges call the 7:1th factor as
the first factor, ;th factor as the second factor, - -, and lastly 4,th factor as
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the pth factor and the other (m — p) factors as (p + 1)th to mthfactors; and re-
write all the treatments accordingly. Then it is obvious that the 7th treatment be-
comes (0 0, --- , 0) and the jth treatment,
0o0,---,0,11,---,1).
P times (m—p) times
It is obvious that interchanges of levels or renaming the levels of any factor
does not alter the order of an interaction;so also the permutation or renaming of
factors. Hence the above changes will not alter the order of any interaction.
After renaming the treatments arrange them in the original order. This will
mean permutation of rows of L, . Let the rearranged matrix be M, . Then the
rth row of M, is the 7th row of L, and the sth row of M, is the jth row of L, .
Let L,L, = (I;;] and M;M, = [mij]4,7 = 1,2, --- , sm. Then it is evident that

(4.3) l@j = mrgo

It is easy to see that M, also gives a complete set of normalised orthogonal
contrasts belonging to the (¢ — 1)th order or g-factor interactions. Hence from
Lemma 2.2

LQL; = MqM;

(4.4)

1.e. Iy = My,
Hence
(45) lij = l:s'

This shows that f%; depends only on the exact number of factors say p,
which occur at the same level in both 7th and jth treatments. Let us denote it
by 3 ,p = 0,1,--- ,m;p = m denotes all levels equal ( = 7) and fx is a diag-
onal element.

Equating the two forms of C (2.3) and (4.2) with » = S™, we obtain

(4.6) Diag (ry, 72, - ,1s) — %NN' = [Z 0y 3:'],
gq=1

Equating the elements we get

4.7 i 0, % =7 <1 — %)

a=1

and
“8) C Xafh ===
g=1

where \;; equals number of times sth and jth treatment occur together.
Using (4.5), (4.7) and (4.8) we have

(4.9) 7‘1=7‘2=,"’y7'v=L20¢ﬁ”=r Say,
k— lqul
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and if sth and jth treatments have p factors at the same level,

(4.10) N 20,14 = — A say.
E = k

Now (4.9) and (4.10) imply that the design must be a partially balanced in-
complete block design. The definition of P.B.I.B. was first given by Bose and
Nair [2] and later generalised by Nair and Rao [3].

Parameters b, k, r, being selected to satisfy combinatorial properties of the
design and v = S™, pth associates of any treatment will be all the treatments
which have exactly p factors at the same level as in the given treatment. Hence

(411) np=<;n)(s—l)m—‘, P=0, 1""’m—1
and
(4.12) p% = Z (;IZ) (T:f) (m —]{C:/j + u) (S — 1)**(S — 2)(m—k—i—i+2u)’

where summation extends over all the values of u which are less than or equal
to minimum of %k, ¢, j and for which m + 2u > k + 7 + j. Parameters
N, M, ccc, Amo are given by
fo fo oo fT][ 6 Ao
i fioe e M
(4.13) , = -1
P I k]
f:)n frln cte fz om l>)‘m
where A, = —r(k — 1)

and 6 is a dummy parameter always equal to zero, introduced to simplify the
inverse relation. (4.13) can be shortly written as

F(m)-0(m) = —%a(m).

As it will be shown later in section 7 the inverse relation of (4.13) exists and
can be written as

(4.14) o(m) = —% (F(m)]"%(m).

Therefore it also follows that in every P.B.I.B. with parameters as given above
‘complete balance’ over each order of interaction is achieved.

Hence we have the following theorems.

TureoreM 4.1. Every P.B.1.B. design with parameters as given in (4.11) and
(4.12) achieves a ‘complete balance’ over each order of interaction.
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TaEOREM 4.2. If in a design

(i) ‘complete balance’ is obtained over each order of interaction

(ii) covariance between the estimates of any two conirasts belonging to different
orders of interactions ts zero; and

(iii) the number of plots is the same in every block; then the design must be a
P.B.1.B. with parameters given above.

CoRrOLLARY 4.2.1. In any design with S treatmenis if complete balance is achieved
over all contrasts then the C-matriz 3s of the form given by

(4.15) C = 0(1s —§E38>

CoRrOLLARY 4.2.2. In any design if complete balance is achieved over all contrasts
and if the block size is the same for all the blocks, then the design must be a balanced
incomplete block design.

From (4.15) it follows that if m = 1,

(4.16) fi=-g =221
and hence

111 -1
(4.17) FQ) = 3 [1 S — l:l.

6. Analysis. Let us consider a symmetrical factorial design which is a P.B.I.B.
of the type defined in section 4. Then as in (4.1)

(5.1) C= Zl 0,L, L,
q=
where 6’s are given by (4.14) as
(52) o(m) = —1 (]2 (m).

Hence if 1't is any normalised contrast belonging to (¢ — 1)th order inter-
action, applying Lemma 1.1 we have

(5.3) 1t =1Q/6,
(5.4) vt = o/,

and

(5.5) S.S. due to I't = (1’0(3) 2.

Now if T'; is the yield of the sth treatment, and t is a column vector (7, T2, - -,
T,) and we suppose that the experiment is a randomised block design with r
replications, then

(5.6) 't =1t/r
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(5.7) V(l’f) = 02/7'
and

1z 2
(5.8) SS. due to 1% = & ;r) :

Hence by comparing (5.3), (5.4) and (5.5) with (5.6), (5.7) and (5.8) respec-

tively; we obtain the following procedure for analysis:
(1) caleulation of Q

(ii) ealeulation of sums of squares for each order of interaction separately,
ag if it were a randomised block experiment but using Q in place of T

(i) caleulation of 6,’s by using (5.2)

(iv) correcting S.S. obtained in (ii) by 6,’s instead of by 7.
If we have a quasifactorial experiment or if it is necessary for some purpose, we
will require estimates of individual treatment effects and variances of ele-
mentary treatment comparisons. For that we know by (2.19),

(5.9) Lt =110
0,
Hence
(5.10) SLLIt = [Z 1 LqL;] Q.
g=1 a=1 0,
Since

(Llngl |L,,,|\—/1-s—j;Es'"1>

is an orthogonal matrix, (5.10) simplifies to

(511) I:Iv - le:l f = [Z }' LQL;] Q
v g=1 04
where v = s™. Put E,t = 0 and we obtain a solution given by
A i ]-
t=[Eluu]e

g=1Ugq

(5.12)
t = MQ say.

Let U, be defined as follows
0 [ U
1/6, U,

1/02 = Uz .
L)om UmJ

Then as in (4.5) Uy, Uy, --- , U, are the elements of M. The element in the

(5.13) F(m)
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ith row and jth column is U, if the sth and jth treatments have exactly p fac-

B. V. SHAH

tors at the same level. Hence (5.12) simplifies to

(5.14)

where S;(Q;) is sum of Q,’s corresponding to the treatments which are sth as-
sociates of ¢; as defined in (4.11). From solutions (5.14) it is easy to see that, if
t; and ¢; are pth associates

(5.15)

levels

i = UnQ; + ; U:S:Q;)

V({E; —t;) = 26" (U — Up).

ExamprLE 5.1. Consider example with two factors A and B each at three

V = b=6 K=6 r=
Ng = Ny = 4 )\o =3 )\1 =
Block No. Treatments
1 10) 2 0) o1 21) © 2) 1 2)
2 © 0) 10) 11) 21) 0 2) 2 2)
3 © 0) 20) 1) a1 1 2) 2 2)
4 1 0) 2 0) 1) a1 © 2) 2 2)
5 © 0) 2 0) 11) 21) a2 12)
6 0 0) 01) 10) @21) 12) 2 2)
Using the formulas in section 7.
1 1 -2 1
1 4 4
4 4 1
[F@2)1™ -2 1 1
1 -2 1

Apply (5.2)

o
61
23

O =t

-2

-

4
1

1
-2 1

L)

Let Q;; denote adjusted treatment yield of (¢5) and

Q= § Qs

2
Q. = 2 Qi
im0

;
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Then
Main effect of A = Z Q3 ./4.3.
=0
2
Main effect of B = ) Q%/4.3.
7=0
2 2
Interaction AB = g(z Qi — 2 Qi _ —Z&)
7 3 3
Also

O =

0
F(2) [1/0{' =
1/6,

Hence using (5.14)

1 -2 1 0 —1/42
1 1 —2f|1/4]|=]-1/28]
1 4 4 ||o/7 5/21.

i = #Q;i — &S(Q) — #5:(Q))
and using (5.17) we get
V(i — ;) = &0 if t; and ¢; are Oth associates;
= 1o* otherwise.

6. ST'S2?, ---, Si* Factorial experiment. Some matrix operators are defined
to derive certain further results.
Operator ‘X’ denotes the Kronecker product of matrices defined by
auB  apB, ---, a1, B
(6.1) AXB-= [aij] X B = a2§B 2B, -, a: B .
amlB am2By Tty amnB

The operator ‘®’ denotes the symbolic kroneker product of suffixes defined by
the following illustrations.

—)\oo‘l
o M| _ | A
(6.2) [)\1] ® [)\1] N )\mJ

| A\

and

oo

0 Oo1
[/} 0 o2

©3) HEGEM
01 0 610

|
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THEOREM 6.1. If n a ST'S22, - - , Si* factorial experiment

(i) any contrast belonging to the interaction involving q: factors al S; levels (7 =
1,2, ---, k) is estimated with the same variance say o°/64a, --.an

(ii) the estimates of all effects and interaction are all uncorrelated and

(iii) the block size is a constant equal to k say; then the design must be a PBIB
with relevant parameters and conversely.

If any two treatments have exactly p: factors (each at S; level) at the same

level for7 = 1,2, - -+, h; they will be called (pip2, - -+, p»)th associates. Then
we have ‘

h
(6-4) Nply p2y voe y ph = IIl (g’) (S' — l)mi—P.'

and the relations between 6’s and \’s are

F(my) X F(mg) X, -+, X F(my)-0(m1) ® 0(ma) ® -+ ® 6(ms)

(6.5) 1
=3 Amy) ® A(my) ® -+ @ Al(ma),
0(my) @ 8(ms) @ -+ ® 6(my)
(6.6) - —% [Fom)I™ X [Fm)]™ X -+ X [Fmy)]™

A(my) ® M(ma) ® -+ ® A(ma)

where 6y, ... .0 = 0 and Amymy , oo, my = —r(k — 1).

Proor. The theorem can be proved for A = 2 exactly on the same lines as
section 4 and relation (6.5) can be obtained by noting that the matrix represent-
ing an interaction of (g; + ¢z) factors out of m; -+ m, factors can be expressed as the
Kronecker product of two matrices representing interactions of ¢; and g, factors,
out of m; and m, factors respectively; and then using properties of the Kronecker
product of matrices. And the result can be easily generalised for any valu€ of A.
(6.5) and (6.6) can be used to simplify the analysis of many asymmetrical factorial
experiments. For example the design of plan 6.9 of Cochran and Cox [11] has
parameters v = 3.2°, b=6, r=3, k=6 and Ap=1, A=3, Au =2, Au = 0,

Mz = 1, Az = —15; hence 0’s can be calculated as 613 = 6 = 610 = 3 and b, =
8/3, 612 = 5/3 and the analysis can be performed as in section 5.
7. Evaluation of F(m) and [F(m)]™". Put m; = mg = --- = m, = 1in (6.7)

and write F(m,) as F;(1) to avoid ambiguity. Then (6.7) becomes
Fi(1) X Fo(1) X -+ X Fy(1)-6(1) ® 6(1) ® --- ® 6(1)

7.1
(7.1) - _%;,(1) @A) ® --- ®a(1).

From (4.17) we have

(7.2) F(1) = é[; Si_—l 1]'
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Hence

(73 wor =[50 1]

Hence (7.1) and 1ts inverse relation can be written as

(7~4) Adl dgy eooq dy = S Z III G (Cz di)06162 ~~~~~ (73
..1 i=

and

(7.5) Birdy. oo ay = —F s HH (Cid)Neyeq,o-,

where ¢; and d; take values 0 or 1; the summation is over all the values of
(cic2, -+, ¢x) and

G:(10) = —1=H,0,1)
Now put S, = Se = -+ = 8, = Sin (74) and 6.y, , ..., o, = 0, where ¢ =
number of ones in (cicz, -+, ¢x); on simplifying the coefficient of 6, on the
right side of (7.4) is given by
h

(7.6) > IIl Gi(cidy)

where D’ is summation for those values of (cicz, - -, ¢») which have exactly
g ones and b — ¢ zeros. Now if the number of ones in (didz, - - - , dy) is p, then

it is easy to prove that,

r .k _
(7.7) 211 Gilesds) = 32 ( f) (2‘ _: ) (=17 = 1)
where D is summation over all the values of 7 such that

max (0, p + ¢ — A) < 7 =< min (p, q).

Hence if there is balance over each order of interaction, Aa,a, , ... , 4, depends
only on the exact number of factors (say p) which occur at the same level. This
must be so, as it was proved in section 4. Now writing Adya, . -.- , a5 a8 Ap (7.4)
becomes

) - 22 (D) (R IT) s -

tvg=0 1

Comparing (7.8) and (4.13) with m = h we obtain

(7.9) 3= % = (j’) (’;‘ B g’) (=1)*S = D).
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Working similiarly with (7.5) we obtain
1 &y (m — q> ( q ) i .
7.1 = — ] (- —iQ _ 1)9
@10) o=~ 55 (" 79 (,, % _ ) (07 - D,
where Zf is summation over all the values of j such that
max (0, m — p — ¢) < j < min (m — p, m.— q).

Hence the inverse relation of (4.13) exists and is given by (7.10). If ¢% is an
element in the (p 4 1)th row and (¢ + 1)th column of [F(m)]™" then on com-
paring (7.10) and (4.14), we have

7.11 ! = *(mfp)( P ) —1)"T(S — 1)°.
a1 g =" T ) o) DTS =D
Equations (7.9) and (7.11) are not convenient for writing down the matrices

F(m) and [F(m)]~". But the following relations, easily derivable from them will
enable us to write out these matrices easily, along with a check.

(7.12) ot = () 65 = v
(7.13) g = (=1 (8~ 1"
(714) g’; =1

a __ m —1\m™4e
(7.15) g = (q)( 1)
(7.16) g5 = ¢ + gha + (8 — g}
(7.17) g = 8" fre,

8. Remarks. It should be noted that a general class of quasifactorial designs
as defined by C. R. Rao [4] has the same parameters as given in (7.4). Hence
the variance of a treatment contrast for any design belonging to that class can
beo btained from (7.5).

Two factor designs in the above class form an important group. Their analysis
can be done by using (7.4) and (7.5) with h = 2 and the method given in section 5.
It will yield the same expressions as given by C. R. Rao and K. R. Nair in
[10]. They are, therefore, not reproduced here.

Secondly construction of PBIB designs with parameters as required in the
above designs is considered by M. N. Vartak [5] D. A. Sprott [6] and C. R. Rao
[4].

Furthermore in the above design if Agy = Ao1-0Or A1o then 61 = 6y or 61 and the
design becomes a group divisible PBIB.

All the designs mentioned in this paper can be successfully used by introducing
Pseudo-factors. The method of introducing Pseudo-factors is discussed by Kramer
and Bradley [12] for factorial experiments in group divisible PBIB.
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