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1. Introduction. Let us suppose that particles arrive at a counter in the time
interval (0, «) according to a Poisson-process of density A. Each particle arriv-
ing in the time interval (0, «) independently of the others gives rise to an
impulse with probability p or 1 according to whether at this instant there is an
impulse present or there is no impulse present. The time durations of the im-
pulses are identically distributed independent positive random variables with
distribution function H(z) and these random variables are independent of the
instants of the arrivals and of the events of the realizations of the impulses.
We define as “registered particles’” those particles which occur at an instant
when there is no impulse present. Denote by »; the number of the registered par-
ticles in the time interval (0, £). The problem is to determine the distribution law
of »; and its asymptotic behaviour as { — o,

The particular case of the above problem, when the time durations of the
impulses are constant, was investigated earlier by G. E. Albert and L. Nelson
[1]. ’

2. The structure of the process. Denote by {r,} the sequence of instants at
which particles are registered. We say that the system at any instant £ is in state
A when no impulse covers the instant ¢ and in state B otherwise. Then the sys-
tem assumes the states 4, B, 4, B, - -- alternatingly. Let us denote by £,
m, &, 72, - - - the times spent in states A and B respectively. If the system at
the instant ¢ isin state A, then ¢ is evidently a regeneration point of the process.
Consequently {£.} and {7.} are independent sequences of identically distributed
positive random variables. Clearly P{t, < z} = F(z) =1 — ¢ if z = 0.
Write P{y, < 2} = U(z), where U(z) is still unknown. (We use P for the sym-
bol of probability and E for expectation.) It can easily be seen that the instants
of the transitions A — B coincide with the instants 7, (n = 1, 2, ---). Conse-
quently the time differences 7.1 — 7. (0 = 1, 2, - - .) areidentically distributed
independent random variables with distribution function G(z) = F(z) * U(x)

ie.

6 6@ = [ Ul - pe™nay,
0

while P{r; £ z} = F(x).

3. Notations. Let us introduce the following Laplace-Stieltjes transforms:

@ 7o) = [ ¢ a6
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and
3) ws) = fo " U,

By (1) we have
@ ¥(8) = 5 w(0)

Further put
®) a= [ e dH@), § = | " @ - o) dH®),
®) r=[ravw, o=[ G-,
@ A= f: +dG), B = fom @ — A) dG().

By (1) we clearly have that A = = + (1/A) and B* = o’ + (1/A%).
Denote by P(t) the probability that at the instant ¢ the system is in state 4,
and put

@®) w(s) = fo " ePG) d.

4. Theorems concerning v;. In what follows we shall give some general
theorems for »..

1. We have
9 P{v; = n} =1 — F@t) » G.(2),

where G,(z) denotes the n-fold convolution of G(z) with itself. (Go(z) = 1 if
z = 0and Go(z) = 0if x < 0). For

P{Vt § n} = P{t < 1'1..|_1} =1 - P{Tn+1 § t},
and T =mn+(re— 1)+ -+ 4+ (taq1 — ™) is a sum of independent
random variables.
2. If A < o, then we have
(10) lim P{VT.H - Vr é ’n} =1- G*(t) * Gn(t),
T->0 )

where

}.ft[l—-G(u)]du if t20

G*(t) = (A %
0 T if t<0.



THEORY OF COUNTERS 1259

The proof is similar to that of (9), only we must use the result

lim P{VT.H —vr 2 1} = G*(t),

T->0

which was proved_by J. L. Doob [2].

3. If B® < «, then we have

Ve — 7
. A4 1 e —%2/2
— < = .
(11) }E:}P Bi = z Vo Lo e du.
A8
This can be proved by the aid of the method of W. Feller [3]. (Cf. [5]).

)

4. If B* < =, then we have
t
1

Vg — =
P <{lim sup ___A___ =
t-»00 2B2

/‘/—AT t log log t
(12)

Vi — —

—PUminf A — b

t->c0 232
1/ A8 tlog log ¢

This can be proved by the aid of the law of the iterated logarithm stated by P.
Hartman and A. Wintner [4].

5. Applying the strong law of large numbers we obtain

o Ve -]; —
) o

(cf. J. L. Doob [2]).
It is easy to see that E{r;} = M(t) can be expressed as follows:

(14) M) = il P{r. < t}.

6. If A < o, then for any h > 0 we have

15 im M@+ h})b - M@ _ L

by the theorem of J. L. Doob [2].
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7. If B* < «, then we have

pg— 1 B+ 4 1
(16) j; € dM(t)-Zé-"W—XZ"'O(s)
if s — 0. For by (9) and (14) we have
® ot _ A
n fo ¢ MO = B = @]
and

2
() = 1= sd + = (B* + 4) + os)
if s — 0.

8. For the Laplace-transform of P(f) we have

P e _ 1
(18) w@ = [ P at - ST
and
(19) P = lim P() = XIZ'

Proor. As M(t + At) = M(t) + P()AAt + o(At), we have M'() = AP(t),
and thus (18) follows from (17). Now

t
(20) PO =1- [ 11— Uk - 2] M),
for by the theorem of total probability we have
© t t
1—-P@ = Z[ [1 —U@E— 2)] dP{r. < z} = f [1—=U@¢— 2)] dM(z),
n=1 J0 0
which agrees with (20). By virtue of (15) we obtain from (20)
. 1/ T
lim P() = 1 _Zfo - U@lds=1-7.
Since 7 = A — (1/MA), equation (19) follows.

ReMmark. Taking into consideration that M’(t) = AP(t), we obtain from (20)
the following integral equation for P(t):

@) PO =1-1 - UG - 2)P@) da.
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From (18) or from (21) we obtain that

I - _A+s[. 1
(22) o) = [ e aue =23 [1 5 +8)r(s)].

To apply the above theorems it remains only to determine G(z), A, and B>
6. The determination of G(z), A, and B2
TaeorEM. If 0 < p = 1, then we have

_ ® —sz _ Ap + 3
v(s) —j; e dG(z) = PNTF D

(23) © 14 -1
- zr_()rl-F—sj{l exp [-—st — )\p_[ (1 - H@) de dt} ;

if a < o, then

(24) A= &_"'_P___},

Ap
and if £ < o, then

B = 2::a fo ) {exp I:)\p f, "1 = H@) dx] - 1} dt

(25) '
+ zeXpa _ e2kpa + p2 -1
(Ap)? '
If p = 0 then U(z) = H(x) and consequently
(26) G@) = fo Hx — y)e™\ dy,
@7 A = 1+ >\a,
A

and

1+ 2\
(28) B = LEXE

Proor. Let us consider a new process which is a particular case of the process
defined in the Introduction. Suppose that the density of the underlying Poisson-
process is \* and each particle gives rise to an impulse (with probability p* = 1).
Let H*(z) = H(z) be the distribution function of the duration of the impulses.
This is the case of Type II counter. Denote by {£%} and {n%} the sequences of
the times spent in state A and B respectively. Clearly P{¢}i < 2z} = 1 — ¢
if # = 0. Write P{n% < z} = U*(z). Denote by P*() the probability that at
the instant ¢ there is no impulse present. We have showed in [5] that

(29) P*(t) = exp [~>\* fo‘ 1 — H(2)] dx:l
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Applying (22) it follows that

A+ s _ 1
A* Ar*(s)’

(30) W (s) = fo e AU =
where
G %) = fo T EPrY) dt = fo ) exp{—st — fo I - HE@)] dx} dt.

Now we observe that, if in this new process A* = Ap, then we have
(32) U*(x) = U(),

where U(x) is related to the general process. The equality (32) can easily be
seen if we take into consideration that the arrivals of those particles in the gen-
eral process, which arrive during a dead time and which give rise to an impulse,
form a Poisson process with density Ap. Accordingly by (30) and (31) we have

w(s) = fo e dU(x) = y’—)\g—s

—{)\p fow expl:— st — Ap fot (1 — H(z)) dx] dt}—l,

and by (4) we obtain (23), which was to be proved.
If we introduce for the new process the analogous quantities M*(t), A* and
B* corresponding to (7) and (14), then by (16) we obtain that

(33)

° ° 1 ,B¥+ 4% 1
8t * = \¥ st pDx - —
(34) fo e dMH(D) = ) fo &P dt = e+ D e — s+ 00
if s — 0. Since P* = lim/, P*() = ¢ "%, we obtain from (34) that
(35) A* = &/ \*
and, further,
(36) B = nrA% [ [PH) — P¥ldi — A + 24%/A*.
0
If in particular A\* = Ap, then clearly
1 _ 1
A 3= A X
and
1 1
B-g=8"-%

and thus (24) and (26) are proved. The case p = 0 is evident.
Finally we remark that the more general case when the arrivals of the par-
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ticles to the counter form a recurrent process was dealt by the author [6], [7],
[8], but explicit solution was given only for a particular distribution H(z).
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