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1. Introduction. Several authors have recently investigated the power func-
tion of the frequency x-test. Eisenhart [1] and Patnaik [2] have obtained large
sample expressions for the power of the simple goodness of fit x*-test (i.e. where
the class probabilities are completely specified by the null hypothesis). The
more complicated case, in which the parameters occurring in the expression for
class probabilities require to be estimated, has not received a unified treatment,
although the problem has been treated in a number of specific situations by dif-
ferent authors, including, Patnaik [3], Sillito [4], Stevens [5], Pearson and Mer-
rington [6], Poti [7], Chiang [8] and Taylor [9].

Due to difficulties in obtaining the power function of the frequency x2-test
in the usual manner, Cochran, in an expository article [10] has suggested the
derivation of its Pitman limiting power [11], and he illustrated it in the case of
the simple goodness of fit test. The concept of asymptotic power suggested by
Pitman has also been extensively used in various other areas like nonparametric
inference (see e.g. Hoeffding and Rosenblatt [12]) and seems to be a useful tool
for comparing alternative consistent tests or alternative designs for experimenta-
tion, with regard to their performance in the immediate neighbourhood of the
null hypothesis.

The consistency of the frequency x2-test has already been established by
Neyman [13]. The object of the present paper is to obtain the Pitman limiting
power of this test when the unknown parameters occurring in the specification
of class probabilities are estimated from the sample by an asymptotically effi-
cient method like the method of maximum likelihood, minimum x? ete. In
section 5, we discuss a few applications of the Pitman limiting power for fre-
quency x2-tests.

2. Pitman’s concept of limiting power [11]. Let H, be a certain hypothesis
and 3 a test-procedure for testing Ho, which determines the critical region w,
in Ry, (the sample space of N, dimensions), forn = 1, 2, - -+, ad. inf. Let us
assume further that

(2.1) Npy1 > N, for all n,
(2.2) 0 < lim Prob {w. | Ho} = @ < 1,
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1222 SUJIT KUMAR MITRA

and for any alternative H
(2.3) lim Prob {w, | H} =1

Let {Ho,} be a family of alternative hypotheses such that
(24) lim Prob {w. | Hox} = B(3, {How})

exists and 0 < B(3, {Ho.}) < 1.

We call 8(3, {Ho,}) the limiting power of 3 with respect to the family of al-
ternatives {Hon}.

This concept of limiting power derives its usefulness from the fact that, if
3’ is any other test procedure, which suggests critical regions w., , instead of
w, , with w,, satisfying (2.2) and (2.3), and if

B(3, {Hu}) s BT, {Ho})
then for n sufficiently large

Prob {w, | Ho,} S Prob {w, | Ho.}.

3. A theorem in frequency chi-square. Suppose that we have R = > i_ir;
functions pij(as, @, - -, ), G =1,2,--- ,¢;5=1,2, -+ ;1),of s<R — ¢
parameters a; , a2, - - - , a such that for all points of a non-degenerate interval
A in the s-dimensional space of the a;’s the p,; satisfy the following conditions

(a) leii(al’a2,"';a8)=1f0ri=1:2y”'7%
i=

(b) pifar, ez, -+, @) > ¢ > 0forall 4,

. . ” pi;
(¢) Every p;; has continuous derivatives 9pii and B4 ,
day, day, doue

(d) The matrix D = {%} is of rank s.
Aoy, | rxs

(We shall assume that the index pairs (¢, 7), indicating the rows of the above
matrix or of any such matrix we define in future, are arranged in the lexico-
graphic order.)

Forn = 1,2, ---, ad. inf., let (N, N5™, .-+, N{™) be a sequence of row
vectors such that for s = 1, 2, --- , ¢, and every n, (i) N{® is a natural num-
ber, (i) N{** > N, (iii) if N, = D 4=y N{™, then N{”/N, = Q; independent
of n.

Let @ = (a3, a5, -+, a2) be an inner point of A and let

Cii(":'_‘ 1’2"'°’q;j= 1)27"';7‘5)

be a given set of numbers such that

7%

(31) Zcij = O, for s = 1’ 2’ cee L q.

i=1
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Put

(32) pg? = Pif(ag ) ag y "y ag)
and

(33 Diin = pis + \Z_;,_;

Let no be a positive integer such that for n = n
Pijn > 0 for all 4, 5.

Forn =mno,m+ 1,---,ad. inf., let {vijn} (2 =1,2,--+,¢,5=1,2, -+, 1)
be a sequence of R-dimensional random variables such that

[

q Ngn). vis
34) Prob {vi.} = ,I;:! o ’gmim

Vsjn *

7=1
if v:;» are any set of non-negative integers (some of which might be zero) and
j‘:vz’jn = Nz('n);i = 112) e g,
= 0, otherwise.
Consider the system of equations:

L i'n'-Nn T ia +j
3.5) ;;H&&%ﬂ, k=128
1=1 j= ' 15
We shall prove
TurorREM 3.1.

(i) The system of equations (3.5) have exactly one system of solutions
al N N N
®, = (aln,azn"",am)

such that G converges in probability to & as n — o (or, in symbols, &, —* @ as
n— »).
(ii) The value of x* obtained by inserting oy, = un tn

q T4 2
2 _ (vi]'n - NnQipiJ'(aI’ QA2 °° a,))
x 12=:1;§1 NaQipijlan, oz, -+, o)

(3.6)

is, in the limit as n — oo, distributed in a non-central x*-distribution ([2], [14]),
with R — s — ¢ degrees of freedom and non-centrality parameter
A = &[] — B(B'B)"'B']5,

where

§ = .{c———"" ‘_/_6}
VY% Jext’
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(.-
% O / @' = @of rxs

Proor or (i). We observe that for n > d = max;,; Q: | ¢i; |,
| viin — Na@pii | 2 0V Nu=> | vijn — NuQpisn | Z (1 — Qi] ¢ )V N, -
Hence, using Chebyshev’s inequality, we get
in(l = Dijn) Qs Qi Dijn
Prob {|vijn — NaQ:ipii| = N, §p,( Pij < c
o = NoQips| 2 Vo) = G500 TF < G- o
Consequently, the probability that we have | v;js — N.Qipijn | 2 7V N, fo¥
at least one subscript (¢, j), is smaller than (n — d) ™D QD i Dijn = (n — d)™*
Thus with a probability greater than 1 — (5 — d)™*, we have

and

| viin — NaQpl; | < 2V/'N, for all (4, )

If we put
s = 2= NaQonl
'\/_N » Qi Y%
and ¢ = min Q;, this will imply that with a probability greater than
1—(n—d)7

we have
3.7 | isn | < ilc ' for all (¢, 7).

The proof of Theorem 3.1 (i) can now be completed using (3.7), as well as
assumptions (a), (b), (¢), and (d) and following Cramér’s argument ([15], sec-
tion 30.3).

Proor or (ii). We put
Vijn — N Qi Pij(&1n 5 &2n , * * * , Gion)
Yim = VN2 Qipij (Gan , &ony -+ 5 Qsn)
Xw = {@inm}ra
Y = {yim}ma
Zwy = {Zinlpa = Yy — [ — B(B'B)—IB']X(';)

The proof of Theorem 3.1 (ii) requires the following results.

LeMmA 3.1.

Ziin—5 0 as . n— o«
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Lemma 3.1 can be proved in a manner similar to the proof given in section
'30.3 of Cramér’s book [15].

LemMA 3.2. The limiting distribution of X 2,.) 18 multivariate normal with mean.
8’ and covariance matrix
Ax =1 — PP
where
P = {pidalaxe, (G=1,2-,¢ j=12-,n),(1=12"--,9)

and 8;; 18 the Kronecker’s symbol.
A proof of Lemma 3.2 could be constructed again, on lines similar to that in
T15] section 30.1 (see also [16] p. 118.)

Lemma 3.3. (Cramér’s proposition 22.6 [15]). Suppose that we have jor v =

1,2, ---
Yy = A.% + Ry,

where , , Yo and z, are n-dimensional random variables, while A is a matrix of
order n-n with constant elements. Suppose further that, as v — o, the distribu-
tion of , tends to a certain limiting distribution, while z, converges in probability
to zero. Then y, has the limiting distribution defined by the linear transformation
y = Az, where x has the limiting distribution of the x, .

LemMA 3.4. The limiting distribution of Y (wy 18 multivariate normal with mean

%[l — B(B'B)™'B]
and covariance matriz
Ay = [I — B(B'B)™'B'|[I — PP')[I — B(B'B)"'B']
= ] — B(B'B)™'B’ — PP’ (since B’P = 0 as may be verified).

Lemma 3.4 is a direct consequence of the previous lemmas.

LeEMMA 3.5. There exists an orthogonal matriz L of order R-R such that
s+q¢g R—s—q

e pmim-ip  pphr S+ af 0 0
L B(BB)B’ PP)L_R—s—q( 0 1 )

To prove Lemma 3.5, we write
M(R X 2R) = [B(B'B)”'B' : PP']
and observe that
B(B'B)'B’ + PP’ = MM’
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Since Rank [B(B’'B)™'B] = s, Rank [PP'] = ¢ and B’P = 0 it follows that
Rank [M] = s + ¢. Hence Rank [B(B’'B)™'B + PP’] = s + ¢. But

B(B'B)"'B + PP’
is an idempotent matrix. Hence its only nonzero latent root is 1, which is
thus of multiplicity s + ¢. Therefore, since B(B’B) "B’ 4+ PP’ is a symmetric
matrix, there exists an orthogonal matrix

L =I[L: LR

s+qg R—s8—g

such that
s+qg R—s—gq
LBBB™E +PP)L=,_°7 Z( : ; )
The same matrix L satisfies Lemma, 3.5.
If we now make an orthogonal transformation
WZn) = (WinWon, ** , Wr,n) = YZn)L

it will then follow that the limiting distribution of W(,.) is multivariate normal
with mean

o = &'[I — B(B'B)"'B'|L
and covariance matrix

s+qg R—s—gq
A = s+gq 0 0 )
Y R—s—¢qg 0 I

But
L1
BBB) B+ PP =L Li(f O =1, Iy
0 0/|1,
Therefore
I — B(B'BY?'B' = I — L,L; + PP
= L,L; + PP, since LL' = L,Li + LyLy = I
and

¢ = &'[I — B(B'B)"'B'IL
¥[LaLz + PP'|[Ly | Ly
¥[PP'Ly: Ly + PP'Ly

= §'[0: Ly), since &P =0

It
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Thus as n' — o,
Win 3> 0,for¢ =1,2,---,s+¢,
and Wsigt1,n y Wetgi2my - ° , Wr,n are asymptotically distributed as independent,

normal variates with unit variance and means given by

. '
lim E(w8+a+1,n y Wetgt2,my *°° 5y Wr ,n) = 3L

n->0

Hence
i i (vijn - Nn Q’L Pis (&ln Py &21; y ° ,C)‘Vem))2

im1 7=1 Nu Qi pij (Q1n y Qon, 5 &on)

R
’ ! 2
=Y Ym = Wy Wa = le
$==

is, in the limit as n — o, distributed as non-central x* with B — s — ¢ degrees
of freedom and noncentrality parameter

A = ¥L,Lsd
(PP’ + LoLs)s

= §(I — B(B'B)"'B")%

This completes the proof of Theorem 3.1 (ii). It will be seen that the proof of
Theorem 3.1 given here, follows reasoning similar to that in Cramér ([15],
section 30.3). An alternative proof is also possible on the lines of Wald’s deriva-

tion (Theorem IX [17]) of the large sample distribution of the likelihood ratio
criterion, with suitable modifications.

4. The limiting power of the frequency x?-test. Neyman [13] considers the
following problem:

Consider ¢ sequences of independent trials and let N(; denote the number
of trials in the ¢th sequence. Each trial of the 7th sequence is capable of pro-
ducing one of the r; mutually exclusive results, say

Pil, Pi2, Tty Pi,rg
with unknown probabilities
* * *
Pa, Diz, Tty Dir;
where

2opi=1

t=l

Denote by v;; the number of occurences of p;,; in the course of the N; trials
forming the 7th sequence. ,
On the basis of these observations {v;;} it is desired to test the hypothesis
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that these unknown probabilities p;; satisfy certain known functional relations,
e.g.

H:p:f = pii(“l y 02y 00y al)
where the p;;’s are certain functions satisfying the conditions described in sec-
tion 3, and (a1, @2, *** , @) is an unknown parameter point. Let é&;, 2, -« -,
&, be a suitably chosen solution of
(a1) >3 = Nopsdps k=1,2-",s
ie=] jmml Pii da o

and let xi_o(u) be the upper a percent point of the x’-distribution with » de-
grees of freedom.
For testing H we compute

F ii(v-‘i—Nmpﬁ(&l,&z,--~,&.))2

XH = A A
fa=l juml N(a y (&1 yO2y ", a;)2

We reject H if xi > Xi—o(R — s — q), and accept otherwise. Put N = 2'5_1 N
and Q; = N(/N. Let {c:;}, 8 and B be as defined in section 3. Let F(x’, u, A)
be the distribution function of the non-central x* with u degrees of freedom
and non-centrality parameter . Define the hypothesis

. Cij
Hy:pij = po (e, 02, -+, @) + 7% = puv (say),
where as before (o , a3, -+ , o) is an inner point of A.
From Theorem 3.1, we obtain the limiting power of the xi-test
ﬁ(x%; {HN}) =1- F(X?—a(R - 8§ = Q)7 R —s— q, >‘)

where A = 8'(I — B(B'B)"'B)s.
Let ' = (di, d,, ---, d;) be any vector of real numbers. When

{€ii}ma = Dd,

it is easily seen that

Dij (e}, a3,...,a)) + \c/,,_ = pijloun, aay, ..., ) + 0 (ﬁ)
where aiy = af + di/x'(k = -+, 8). In this case d is of the form

8 = B-e
where ¢’ = (e, ez, -- -, &) is another real vector. We have
A = e'B'(I — B(B'B)"'B’)Be
=0
and B(xx , {Hx}) = «, as wé might expect.



CHI-SQUARE TEST 1229

5. Applications. (1) Planning of experiments for comparing two distribution
functions.

To test the hypothesis that two random variables z; and z; have identical
probability distributions, the test procedure commonly adopted consists in
making a sequence of N; independent observations on the random variable
z; (4 = 1, 2). At each observation we observe the numerical value assumed by
the random variable and according to this classify the results of each sequence
into r measurable mutually exclusive and exhaustive groups (same for both

the sequences).
Let v;; denote the number of observations of the 7th sequence belonging to
the jth group (¢ = 1,2,5 = 1,2, ---,r), 80 thatE}.,l vi; = N7 = 1, 2). The

hypothesis desired to be tested is equivalent to the hypothesis H* that there
are r positive constants p;, pz, - -+ , P, With D ;=1 p; = 1 such that the prob-
ability of a random observation belonging to the jth group is equal to p; for
both the sequences. (We assume that the groups are so chosen that each of them
has a positive probability measure at least w.r.t. one of the distributions.)

If this hypothesis H* is true, the maximum likelihood estimates of p; will
be given by p; = v.;/N, where v; = vy; + v2; and N = N1 + N, . Hence for
testing the hypothesis we compute

. 2
1 2 _ @v_“_gif)_
(5 ) Xu E =1 Q: Vi

We reject the hypothesis if
X2H' > X%—a(r - 1))

and accept it otherwise.

Let us now assume that it costs C; dollars to make an observation on z; (¢ =
1, 2). Since both N; and N are at our disposal it seems now natural to inquire
how best we could allocate our total sampling budget of S dollars to the two
populations, or, more precisely, could we determine the ratio N1/ (N1 + N3) =
Q, which will maximize the power of the above test with respect to all alternatives
violating the hypothesis H*, and at the same time ensure that the sampling cost
does not exceed S dollars. Due to reasons already stated earlier in this paper,
we cannot provide an answer to this question with our existing knowledge.
However, if we agree to accept the limiting power function as our criterion for
choosing ‘the best’, we might seek if the best possible sampling plan exists in the
sense of maximizing the limiting power.

Let ¢;j (6 = 1,2, =1,2,---, r) be any given set of deviation parameters
such that

> e =0, =12 and for at least one j,

j=1

Cij 7 C2j .
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Let us denote by H¥ the hypothesis

Gy

VS

If we decide to take N; and N in the ratio @, : (1 — @,) then the total sample
size will be given by

HY : pi(8) = 9} +

S

=m Whel‘e Q2=1—Q1.

N

Hence HY may be rewritten as

H’:: .'S = q-l- ______f_"_ .
Pu(S) = m VCiQ + C.Q: VN

From Theorem 3.1, we obtain the limiting power of the yms-test
:B(xg*, {H:‘}) =1- F(Xi—a(r - 1), (1‘ - 1)’ XE*)

where
Aax = (I — B(B’B)™'B')s.

After some simplification Az« reduces to

S PR
G0+ G & @ T W

Since for given z and w, F(z, u, A) is a strictly monotonic decreasing function of ),
the maximum limiting power is attained when Ag+ is maximum, that is when

o VG
VG + VG,

Thus to maximize the limiting power the best possible sampling plan, at the speci-
fied budget, is given by

N1= i S ]
|V C (VG + V)
and
n=| 8 :I
(V0 (VCi + AV T)

where [z] denotes the largest integer less than z.

(2) Planning of experiments to detect shifts in response.

Consider the following problem discussed by McNemar [18] who was interested
in ascertaining the effectiveness of an interpolated experience like a movie or a
lecture in shifting individual responses to certain stimuli. Let us take the simple
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situation in which every individual responds to the stimuli in one of two different
ways (say, ‘0’ or ‘1°). Let =;; denote the proportion of individuals in the popula-
tion, who give response ‘?’ before the interpolated experience and response ‘j’
afterit (# = 0,1;5 = 0, 1).

Write

i, = Wi + Ta (t=0,1)
T = mo; + m; (G=0,1)
‘We shall say there is no shift in response if
Hy:m. =,

is true.
To test this hypothesis one can conceive of at least two alternative ways of
experimentation:

(a) two samples, each of size n are selected independently, one from the pre-
experience group and the other from the post-experience group. The test for the
equality of proportions then, is easily seen to be a particular case of the test given
earlier in this section under Application (1). Let us denote the chisquare obtained
for this test by x2.

(b) the same set of individuals, n, in number selected from the pre-experience
group is again examined after the experience, and the results classified ina 2 X 2
table as follows:

Post experience response
0 1 total
Pre-experience response
0 Moo Nnor o,
A N0 nn 1.
total......oooiiii i n.o n.a n

Under procedure (b), to test Hy , we compute

% - (mo — 'nm)2
No1 + 7o

and reject Hy, only if, x5 > xi_« (1). Let us denote by Ho. the hypothesis
i

V'

where Zr3; = 1, 70y = ml = 7 (say), Zci; = 0, and ¢ 5 c10 . From Theorem
3.1, we obtain after certain algebraic simplification:

ﬁ(xgy {Hon}) =1- F(X%—a(l), 1, Aa)

0
Hon LWy = Wiy +
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and
B(xs, {Hon}) = 1 — F(xi-o(1), 1, ),
where
A = (Clo - 601)2
* T 2{Gh + ) + 1)
and

Ay = (010 - 001)2
g 200

The denominator in A, can be rewritten as 2 {7’ — ™+ moomy}. Hence, Ay >,
< or = A, according as (woryi — woiri0) >, < or = O respectively. This
shows that at least from the point of view of maximising limiting power, proce-
dure (b) would be superior to procedure (a) when the association between the two
response types, as measured by moorl; — momio , is positive; inferior to (a) when
it is negative; and equivalent to (a) when it is zero.
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