A LIMIT THEOREM FOR THE PERIODOGRAM

By SaromoN BocHNER! AND TaTsuo KawaTa?

1. Introduction. Let &(¢) be a real stationary process in the wide sense with
mean 0 and let its covariance function and spectral function. be p(w), F(z) re-
spectively. We assume that F(z) is absolutely continuous and has a spectral
density function p(z). The second-named author, [1], has discussed the periodo-
gram

1.1) J(T) = ﬁ,

T X 2
[ s)e ™ at|
T

in case &(¢) is stationary even of the fourth order, so that the expectation
Eg)e(t + we(t + v)et + w) = P(u, v, w)

exists and is a function of w, v, w alone. It was also assumed that the function
Q(u, v, w), which is the difference between P(u, v, w) and the corresponding
fourth moment of a stationary Gaussian process, is the Fourier transform of a
function and that the latter function satisfies the Lipschitz condition. Under
these assumptions it has proven that (1.1) does not converge in mean to any
random variable as T' — <, but that the covariance function of J(7") and J(T")
does tend to a limit whenever 7' and 7" both tend to infinity in a certain related
manner, and the limiting value of the covariance function was determined.

The paper involved a rather troublesome manipulation of a Fourier integral,
but we have found since that under somewhat different assumptions the compli-
cations can be reduced appreciably. In a separate publication, [2], a certain
integral transformation was investigated on its own merit, and in the present
paper an application of the somewhat modified approach will be made to the
problem of the periodogram. The expression (1.1) will be replaced by a more
general one, and as regards the difference function Q(u, v, w) the assumptions will
be modified as follows. We add expressly the requirement that Q(u, v, w) shall be
integrable in Ej, but the requirement that its Fourier transform shall satisfy
the Lipschitz condition is being omitted entirely.

2. The Theorem. We shall consider the random variable

f_ : s()M G,) e

in place of (1.1). We shall call (2.1) a generalized periodogram of &(¢).
Let us assume that

(2.2) P(S] y S2y 33) = Q(Sl y 82, 83) + PG(SI » 82, 83)7
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where

(2.3) Po(si, sz, s3) = p(s1) p(s2 — s3) + p(s2)p(ss — 1) + p(sa)p(s1 — o).

If &(t) is a stationary Gaussian process, then Q(s; , sz, s3) = 0. This assumption
was set up first by Magness [3]; see also Parzen [4].
We assume further that

(2.4) Q(s1, 82, 83) € Ln(Es),

and that the Fourier transform of Q(s; , sz, $3) is also in L;(E;), so that

(2.5) q(@y, s, ) = L e “?Q(s, 82, 8) dv,

3

(26) Q(sl y S2, 83) = (27")-3 f e_i (”)9(931 y L2y x3) dvz )
E

where E; denotes the whole Euclidean space of k dimension and (s - z) =
171 + S22 + S3%s .
Under these conditions, we obtain the following theorem.
TueorREM. Let M () be bounded and integrable in (— «, ) and let the Fourier
transform K (x) of M (c)
K@ = [ ¢ M(e) da
satisfy
2.7 K@) = 0(|z|™), asz— .
Then we have, as Ty and T tend to infinity such that Ty/ Tz — p, u #= 0,
@o)’ (CPF + 1C7Pw'0),  ifs=0,
@8) limoeov {S(T), ST} =4, o,
@2m)" |G P (®), g0,
and
22m)* (O + 1CPF — 16.°F
29) lim E{S(Ty) — S(T)}* =4~ [C2p*0),  if£=0,
22n) (ICP] = 1C2)P'®),  H(® #0,

provided that p(x) is continuous at &, and the constants C? (j = 1, 2) are given by

cP = 4 [ M(e)M(ua) da,

C,(,z) = u% / M()M(pa) da.

We add a remark. If g— oo, or u — 0, then C,f”,_C,fz) converge to 0. This is
easily seen from the fact that C° = C{j,, € = Cij), and | £ WM (2,
\M(a)| da — 0, (u — 0), M being an upper bound of M(a).
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We also note that the theorem implies that the constant
(P + 6F — 1C°F — o

must be non-negative. This can also be established directly by verifying that
it is the value of the double integral

%[: [: [|A(e B) [ + (4(a, B)’] d dB,

where
Ale, 8) = M(a)M(B) — nM (uo) M (uB).

For the proof of the theorem, we first of all state as a lemma, a theorem given

in [2].
Lemma l. LeaM;(a) (j =0,1, --- , k) be bounded and integrable over (— 0, )

and let their Fourier transforms be

K@) = f ¢™M,() da, G =01, k).

}m OO

Put
K@ ,zo, 2 ;To, Tr, -, Th)
k k
=II7; - K(Tow + 22 + - + 2) L1 K(T; )
7= J==
for any positive numbers To , Ty, -+ , T% . Then we have

]im_l f(x17x2y'“7xk)K(xlyx2""7xk;T07Tl»“"Tk)dva.

T ;> To Ep

= Cy(2m) (0, -, 0), G=0,1---,k),

if T; go to infinity such that To/T;— u; and u; # 0 (G =1, 2, ---, k) and
flxy, - -+, 21) satisfies the conditions that the function f(zy , - - - , zx) 18 continuous
and belongs to Li(Ex) and its Fourier transform

g(ali gz, *, a") = -[E ei(a."t)f(xl y Tt xk) dv,
! k
likewise belongs to Ly(E:). Cy s
© 13
Cu= [ M) I] My(=1; o) de
0 7=
3. A lemma. For the proof of the theorem, we need one more lemma.
Lemma 2. Let Ki(x), (j = 1, 2) be a bounded function which is the Fourier
transform of a bounded and integrable function M j(a)

(3.1) K@) = [_ _ M) da, i=12
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and let us assume that
(3.2) Ki(z) = O(I x I 1)7 asr— x, J=12
(1) If p(x) &€ Ly(— «, ) and continuous at —¢, then

3.3) (1) [ Ko + )KnTute + DIp(e) de

converges to
27 Cyu-p(—¥),
when Ty, Ty — o and T1/Te — u and u 5= 0, where
Co=ut [ M(OMi(u8) ds.
@) If p(x) € Li(— o, ), and p(x) continuous as —§, then
(3.4) (T, T} f Ki[T\(zx + £)IKa[Te(z + &)lp(x) dz

converges to zero when Ty, Ts — o such that Ty/Ts — u and u = 0 and & # &.
Proor. (i) We consider the integral

3.5) (0 Ty [ KTy KT, ) di,

which is absolutely convergent because K, , K, are bounded and satisfy (3.2). By
the Parseval theorem, since K ;(x) &€ Lo(— «, ), we have

(T, T)™" [: KTy )Kn(T32) do = o 2;2 - f Ml( )M2< )da

= 2n(Ty/ T f_ M@, (— T >dﬁ.

This converges to
20C, = 2mi® [ MAOM~u) ds,
as is easily seen from the fact that
[ 13008 ~ Mita8) | d 0,

if @ > ao and ap # 0.
Hence it suffices to show that

36) I=(TLT)" f " KTy )Ko(Ty ) {plz — O — p(=9)} do

converges to zero.
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We divide I into two parts:

I= ‘/|‘z|<5 + ‘/;zl>8 B Il+ Iz,

where § is taken so that | p(z — §) — p(—§) | < ¢ for | 2| < 3, € being any as-
signed positive number.
We have

IIII = €(T1 Tz)llﬁ le ]K1(T1 x)Kz(Tz x) l dz

3.7) < (To/TY™ IKl(u)Kg ( ) ' du
S < [ 1 + 1+
for some constant C, as follows from (3.2).
Next we have

Bl s qur” [ oy | BT KA(T2) | Ip(e — 9 da
+ [p(®) | (T2 T j;ﬂ» | Ky(Ty ) Ko(Te ) | dxc
c Iplx — 8| Clp®)| dz
= (T, To)12 ~/;z|>8 ? do + (T T2 J21>5 72’
for some constant C. Hence we get
(3.8) I; = o(1)

as T1T, — «, and this together with (3.7) proves (i).
‘We shall now prove (ii). We have

(T, T [Z Ki(Ty(z + £))KoTao(x + &) dz

(3.9) (T12T:)1/2 [ M1( ) M, (T2> w-ts g,

= 2n(ry/ 1" | Ml(ﬂ)M2<_ %ﬂ) FIOGE gg

and the difference between this and the expression

(3'10) 21F(T1/T2)1/2 f Ml('B)MZ(_MB)eiTlﬂ (E1—¢9) dﬁ
is in absolute value

< 2y [ 1306 |31 (= T6) - M=) | ds

M, (— %ﬂ) — Ma(—uf) } dg.
2
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But this is as small as we please, for T, T large and T';/7. near to u, provided

p#0. .
Now (3.10) tends to zero by Riemann-Lebesgue lemma, and we conclude that

(3.9) tends to zero also.
It suffices, then, to show that

G1) 7= (0T [ KT + KT + 86 — p(—8)) de

converges to zero.
We have

J = (T, )" [: KEi\(T1y)Ko{Toly — (&1 — &)1} {p(y — &) — p(— &)} dy

(3.12)

@y [ rmryt [ =gt
lyl <8 ly1>8

say. Here § is so chosen that

(3.13) oy — &) — p(—&)| <
for |y| < éand
(3.14) |6 —&|—8>¢>0,

for some positive constant ¢. Then
[J1] = (Ty To)' - e./; <o | Ki(Ty ) Ke[Tey — Te(ts — &]] dy
v

1/2 d?/
sanyef T[& = &] = 9)

< (TyYT)’C - ¢ - 8 £ C

for some constant C by (3.13) and (3.14).
Next we shall consider J. . We divide J further into two parts,

Jy = (1) | + (o [

1y]>8, ly—(E1—£2) >0 Y>3, |y—(E1—E2) | <n

(3.15)

= Ja + Ja,

say, where 0 < 7 < } | & — &]|. Then
1

yI>8ly—E—t) >0 11y

|Jul £ (T:T9C f.

(3.16) (ply — &)+ |p(—&)1]) dy

1
- Tely — (5 — &) |

C Ip(y — &) | + | p(=£) |

< ay,
= (T1 T2)'28n £u|>s,w-<e,—tz)|>n yly — (o — &) | v
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which converges to zero as Ty, T — «, since the integral is finite. Moreover

| 2 | = (Tl T2)1/2C

(&1—E2)—n<y < (1—E2)+n

g (9 = 81+ (-8 ) dy
(3.17) (E1—£2)+n

1/2 20 — —
< (Ty/Ty) =51 e toa (Iply — &)+ |p(=8&)|) dy
(E1—E9)+n
<C Coton (Jply — &) | + | p(—8&)|) dy.

Hence limsupr,,rysw,7,/7, Of (3.17) is small for 4 small, that is
(3.18) lim J3 = 0.
From (3.16), (3.18) we obtain
lim J, = 0,

which together with (3.15) gives lim J = 0.

4. Proof of the theorem. We now proceed to prove the theorem stated in

Section 2.
We start with the computation of

ria| oo ()| o (8) <o
= leﬁE fz‘ (1) 8(t2) & (ta) 6,6t r—tatta=to
()@ (E)a (e
fz, Pty — b, s — ty, by — f)e” Ottt
M (%) M (%) M (}_“2) M <7‘,¢2> i,
= 7’1—117’; fm Qs — b, s — b, by — )~ EOtattatd
() 1 () e (7) (7)o

h Pq(t2 - tl, 3 — tl, ty — tl)e—iE(tl—nga_h)

T]. T2 Ey
U\ ([t G\ . (s
M (T) M (T) M (T'> i () o

= Su(Th, Te) + Se(T, T).

ES(T)S(T) E

I

1
T T T,

+
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Inserting (2.6) in Sy(T1, Ts), we have

scr, 19 = o i a0 () 1 () 0 () 1 (7)

—iE (81 —tat+tg—t
ce i€ (L1 —tatts ‘)dvt

: f o1, @, ) exp [its — t)as + it — t)as + it — t)ze] dos

- @n~ Tllﬁ [ ae, 30 do,
@ S () (@) (7)) 7 (2)
- exp [i{ —ti(es + 22+ 25+ £) + ta(r + £) + ta(x — &) + tlws + £) }] do,
= @0 T [ glor, 20, )K= Ti(or + 22 + 22 + 8)
-K[—Ti(@y + 9]-K[To(zs — HIK[— Talas + 9] dv.
- @I [ = bt bn -9
KI=T\( + 2 + 2] B(=T12) K (Tyz) R (— Tys) do,
where we denote
42) K@ = [ Mo de.

Since M (x) and g(x:, 2, x5) satisfy the condition of Lemma 1, we obtain that
(4.1) multiplied by T, is convergent when T1/T: — u(u # 0). Hence (4.1)

converges to zero.
Next we shall consider Sy(T,, T). Inserting (2.3), we obtain

1
T,

(44) ol = et — it () o () ar (1) a1 ()

—if (b1 —tytHtg—t
e (1 —tytts ‘)-dvg

STy, T) = i [ (ot — 8ol = 80 + ot — Wt — 8

Il

UI(TI, T2) + U2(T1; T2) + US(TI? T2)7

say, where

UTs, T = Tl_f f olts — tolts — 1)

. LAWY ﬁ) ﬁ) Y <_ti> it (t—tyttg—ty
M(T1>M<T1 M(T2 M T e dv.,

(4.5)
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and U, , U; are similar terms. By the assumptions of the theorem, we have p(u) =

‘[ ¢™*p(z) dz, and, if we insert this into (4.5), we obtain

0, 1) = e [ [ @) de dy

= 11, [ p@KI-Tie + OIRI-Ti(e + D] do
[ p@KITy ~ DIRITy — 9] dy.
Since £(7) is real, p is real too, and p(x) is an even function, and hence by Lemma

2, we get
lim Uy(Ty, T2) = (2)’Cip(E)p(—8)

4.6) T1,Tg>%

( )

where

(47) ci= [ m@me ds = [ 1@ ds.
Quite similarly

U(T1, To) = T1 T, [ :‘p(w)K[—Tl(x + OIK[To(x — )] dx

[ p@RITG ~ ORI-Ty + 0] dy.
If ¢ = 0, then, by (3.3),

(4.8) Uy(Ty1, T2) — (22)* |CS7P*(0), (T1, Ta— w0, T/T: — u),
where

49) o = w [ MEMS) d.

If £ > 0, then (3.4) shows

(4.10) Ux(Ty, T2) >0, (Ty, Te— o, Ty/T: — ).

Finally we have
Us(T1, To) = Th T [ : P@)K[-T(z + OIK[—Ta(x + 8] dzx
[ PRI~y + DIKI-Tuly + B,

and
(4.11) Ui(Ty, T2) — (2r)° |CPP*(®),  for every &,
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where
(412) o = i [~ M(@)IT(u6) s
Inserting (4.7) (4.8) (4.10) and (4.11) into (4.4), we get: If £ % 0
(4.13) 8y(T1, To) — (2) (C1 + |C2 ) (®)
as Ty, To— o, T1/Ty — u(#0),and if £ = 0
(4.14) 8u(Ty, Ta) = (2m*(C: + [CPIF + |CPP).

Hence we get
(4.15)  ES(T)S(To) — @r)(C + |CPp'E),  if&#0,u %0,
(4.16)  E(T)S(T:) — (20)*(C1 + |C°F + |G°)p’(0),  if& =0, 0.
We also have
BS(T) = 1 f E(t)e(t)M (_t-‘) 74 (12) GO gy
T Je, T T

_T [: p(@) | KIT@ — B[ de,

and by Lemma 2 this converges to 2xCyp(£). Thus we find that
cov {S(Tv), S(T2)} = ES(T,)S(T:) — ES(T.)-ES(T:)
converges to
@YICPP'®),  ifE#0,
and to
@GP + 17 M' ),  ifE=0,
when T, , T; increase indefinitely such as T:/T2 — u(u £ 0).
Especially var S(T) converges to
@nICPlPE),  iE=0,
and to
(@m*(CPF + 1C2p'0), =0
Also, we easily find that
E |8(Ty) — S(Ta)f*
converges to
2@2m)’(ICP°F — |CP)'(6),  HE#0
and to
2em’ (011 + [CP] ~ |G — 1C21)p'(0), i E=0.

Hence the theorem is proved.
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