EFFICIENCY PROBLEMS IN POLYNOMIAL ESTIMATION

By Paurn G. HoeL
Unaversity of California, Los Angeles

1. Summary. Using the generalized variance as a criterion for the efficiency
of estimation, the best choice of fixed variable values within an interval for
estimating the coeflicients of a polynomial regression curve of given degree is
determined for the classical regression model. Using this same criterion, some
results are obtained on the increased efficiency arising from doubling the num-
ber of equally spaced observation points

(i) when the total interval is fixed and

(ii) when the total interval is doubled. Measures of the lncreased efficiency
are found for the classical regression model and for models based on a particu-
lar stationary stochastic process and a pure birth stochastic process.

2. Introduction. In the classical theory of regression, a set of values z;, 2,
.-+, &, of a variable z is selected and observations are made on a related variable
y corresponding to those selected x values. If y; denotes the y value correspond-
ing to z; , it is then assumed that y;, ¥z, « - + , ¥» are uncorrelated variables with
a common variance ¢”. Now if it is assumed that the means of the y’s lie on a
polynomial curve of degree k, that is, that

1) E(y:) = Bo + Buxi + -+ + Bz}

then a basic problem in statistics is how best to estimate the §’s.

There are two aspects to this estimation problem. One is to determine the best
method for using the information given by a set of = observtions ¥, %2, ---,
¥n . The other is to determine the best method for choosing the z values at which
to take observations.

Although much research has gone into studying the first aspect of the problem,
considerably less has been done on the second. Many years ago, K. Smith [1]
was able to determine those x values within a fixed interval that minimize the
maximum variance of a single estimated ordinate for polynomials up to degree
six. More recently, De La Garza [2] was able to show that just as much informa-
tion is obtained from observations made at certain k& + 1 points in the interior
of an interval as from n distinct points in that interval. Elfving [3], Chernoff
[4], Daniels [5], and Ehrenfeld [6] have also made contrlbutlons toward this and
other closely related problems.

In this paper an optimum solution based on the generalized variance is given
for the problem of how to choose the x values in an interval for the classical
regression model. In addition, a beginning is made on the more general problem
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POLYNOMIAL ESTIMATION 1135

of how to choose z values for efficient polynomial estimation when one drops the
assumption that the y’s are uncorrelated.

3. Estimation methods. When a number of parameters are to be estimated
simultaneously, the volume of the ellipsoid of concentration of the estimates
is often used as a measure of the efficiency of the estimates. Since the square
of the volume of the ellipsoid of concentration is proportional to the generalized
variance of the estimates, one can just as well use the generalized variance as
a measure of efficiency. This is the measure that will be used in this paper for
making comparisons of different sets of estimates.

Suppose one wished to estimate the function A8y + AiBi + -+ + M,
where the N’s are an arbitrary set of real numbers, by means of a linear estimate,
ciy1 + coye + - -+ + caYn . Suppose further that the estimate is to be unbiased
and possess minimum variance. Then it can be shown that the resulting esti-
mates for the B’s are given by the matrix formula

@) B = @SX)XS Yy

where S is the covariance matrix of the y’s and X is the matrix

2 k
1 T X e 2T
2 k
X = 1 T2 X2 s T2 |,
. . ’ B
1 %, o -+ @n

Furthermore, it can also be shown that the generalized variance of these esti-
mates is given by the determinant formula

3) G.V. = |X'87Xx|?

These same formulas will be obtained if one assumes that the »’s possess a multi-
variate normal distribution and then finds the maximum likelihood estimates of
the @’s.

The advantage of the estimates given by formula (2) lies in the fact that it
can be shown that among all linear unbiased estimates of the §’s, the estimates
given by this formula possess a minimum generalized variance. Thus, if one re-
stricts himself to linear estimates, these are optimum estimates. All the com-
parisons to be made in the following sections will assume that the estimates are
those given by formula (2), and hence that the generalized varianceis given by
formula (3). :

4. Classical regression. Since the classical regression model assumes that
Y1, Y2, *** , Yn are uncorrelated with a common variance o°, the covariance
matrix S is a diagonal matrix with elements o°. |

Now De La Garza [2] has shown that the same information matrix, X’S™'X,
and hence the same value of the generalized variance, can be obtained by re-
placing a given set of n observations at the points z; , z,, - - - , 2, by a total of n
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observations made at k + 1 properly selected points in the interval from z;
to z. . These points will be denoted by # , &, - - - , {41 and the number of ob-
servations to be made at ¢; will be denoted by n; , where Y 1 n; = n. In terms
of these substitute observations, the matrices in (3) are all square matrices
and therefore the determinant of their product can be obtained by taking the
product of their determinants. As a result, (3) will assume the form

m
;.:, 0 e O
11 .- 1 1 & - #
Ne
é_l{,.= t.l t.z tk:rl 0 ;E ollr & ... £
V. t"‘ t"‘ t". : : k:
1 b2 k41 - 1 by - ton
0 O 2
g
11 -« 1f
_ b b e b o
B DT
ot .- tZ+1

But this determinant is a Vandermonde determinant with value []i<; (¢ — ¢;);
consequently

1 1 k41 . k41
@ GV. = " LIJ (t: = ¢t) H n;

Since Hfﬂ n:, subject to the restriction Zfi} n; = n, is maximized when
Ny = Ng = --+ = Ny, it follows that the generalized variance will be mini-
mized for a fixed set of values when the same number of observations is taken
at each of the ¢ values. This assumes that » will be chosen to make n/(k + 1)

an integer.

Now consider the maximization of [[i<; (t; — ¢;)°, subject to the restriction
that oy £ & S 2w, ¢ =1, .-+, k 4+ 1. If z is transformed linearly so that this
restriction assumes the form —1 < ¢ = 1,2 =1, .-,k + 1, then it is known

[7] that the set of ¢ values that maximizes [ Jic; (¢; — ¢;)* is given by the zeros of
a polynomial which is the integral of one of the Legendre polynomials. These
zeros can be obtained from the proper tables [8].

It is clear from inspecting the function [J(t: — t,)* that the end points of the
interval will always be chosen as two of the ¢ values. It is also clear that the
greater the range of z values, the smaller will be the generalized variance.

In view of the preceding results, it follows that optimum linear estimates of
the coefficients of classical polynomial regression are obtained by using the esti-
mates given by formula (2), choosing as large a range of x values as possible,
taking observations at the & 4 1 points in this range given by means of the zeros
of a tabulated polynomial, and repeating the experiment as many times as the
total set, n, of observations will permit, with n chosen to make n/(k + 1) an
integer. )
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The preceding optimum manner of choosing z values assumes that the gener-
alized variance of the estimates of the coefficients of the regression polynomial
is the proper measure of efficiency to use. If the sample regression polynomial
curve is to be used exclusively for estimating ordinates of the theoretical regres-
sion polynomial curve, then one might prefer a measure of efficiency based on
the variances and covariances of such estimated values. From this point of view,
let 71, -+, meq1 denote k + 1 arbitrary points chosen in the given interval.
Further, let a; and @; denote the ordinate, and its estimate, of the polynomial
regression curve at r; . Thus, )

@ =fo+ piri+ -+ B, i=1-,k+1
and

& =B+ Biri + -+ + Bert, i=1---,k+ 1.
Calculations will yield the covariance formula

k. k

mi; = B — )& — &) = 2 Zo e 707}
=0 g=

where oy, is the covariance of 3, and 8, . Since the generalized variance is the
determinant of the covariance matrix, the generalized variance of the &’s will
be equal to the determinant | m;;|. But it will be observed that the matrix (m.;)
can be written in the form

k

1 nn - n g Ok 1 1 ... 1
L]
T2 T2 . . T T2t TE4l
(ma) = - :
1 k k & k
Te+l *° Terr Lok 0 O JLTL T2 Tt Tkl

Since | oy, | is the generalized variance of the s, it follows that
k1
G.V. (&) = G.V. (B I;I (ri — )’
<7

This result shows that the generalized variance of the estimates of the ordinates
of a polynomial regression curve at k + 1 arbitrary points in an interval will be
minimized when the generalized variance of the estimates of the coefficients of
the polynomial regression curve is minimized'.

A recent paper by Guest [11], which was published after this paper had been
submitted, has generalized the results of Smith [1] to polynomials of any degree.
He shows that the values of ¢, , ¢, - - - , ¢, that minimize the maximum variance
of a single estimated ordinate are given by means of the zeros of the derivative
of a Legendre polynomial. It is easily seen that this set of values is the same set
which minimizes the generalized variance above. Thus, whether one is interested

1T am indebted to Professor John Tukey for suggesting this relationship.
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in efficient estimation of regression coefficients, or in efficient ordinate estima-
tion, either at £ + 1 points or one point, the optimum choice of ¢ values is the

same.

b. Comparison methods. When the assumption that the y’s are uncorrelated
is dropped, the problem of how best to choose the x’s becomes very difficult.
The choice will depend in a complicated manner upon the covariance matrix
S. As a consequence, comparisons will be made only for equally spaced sets of
points and only for three classes of covariance matrices. The sets of points that
were selected for consideration are the following:

(1) n equally spaced points in the interval (0, I)

(2) 2n equally spaced points in the interval (0, 1)

(3) 2n equally spaced points in the interval (0, 21)

(4) two sets of observations of type (1).

A comparison of the relative advantages of choices (2), (3), and (4) over (1)
will be made by comparing their generalized variances. Letting § denote the in-
terval between consecutive = values, these generalized variances will be denoted
by G.V. (n, 8), G.V. (2n, §/2), G.V. (2n, §), and G.V. (2 runs), respectively.

The three classes of covariance matrices that will be studied are the following:

(a) uncorrelated variables, common variance

®) p(yi , y;) = € == o > 0, common variance

(¢) covariance matrix of a pure birth stochastic process.

The first of these is the classical regression model considered in the preceding
section. The second is the covariance matrix of a particular stationary stochastic
process. The third was selected because it represents a stochastic process of the
non-stationary type and in which the covariances grow as z increases. These
three covariance matrices cover a rather wide range of correlation relationships
and therefore conclusions obtained from them should have a rather wide range
of application.

For comparison purposes it is advantageous to consider the following three

ratios:

B 1/ (k+1)
P BCA YD) ]

| G.V. (2n, 8/2)

~ G.V. (n 8) 1/(k+1)
| GV @n, 5)]

GV, (n,5) P
| G.V. (m) runs]

5) Ry =

R3=

The reason for these choices is that it is easily shown that R; has the value m;
consequently if the value of R;, for example, should turn out to be m, it can
be concluded that m runs of the basic experiment are needed to yield the same
efficiency of estimation as that obtained by doubling the number of equally
spaced observation points in the given interval. All comparisons will be made
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in this manner, that is, by stating the number of runs of the experiment needed
to yield the same efficiency as the choice of x values being considered.

6. Uncorrelated variables. It will be assumed that = > k& + 1; consequently
the X matrix in (3) will not be a square matrix and formula (4) will not be appli-
cable. Under equal spacing in the interval (0, 1), the z values will be chosen as
z; = 16. As a result, the X matrix will assume the form

1 & .- oF
1 2 --- (20"
(6) X = .
1 76 -+ (nd)*
Since S7' is a diagonal matrix with elements 1/¢%, it is easily seen that (3)
reduces to

n Z 1. o e E z‘k
1 1

1 ot e+ fn‘_‘ 7 i 2 ... zn: ik

@ GV. (0 oo | '

. n. k+1 n. 2k

The value of this determinant is known [10] to be the polynomial displayed in
(8); hence

n

1 PCE
®  &v (n,0) o%%
where A = (112! --- k)¢ / (1121 ... (2k 4+ 1)!). The value of R, given in (5)
then becomes

9) R,

Ank+l(n2 _ 12)k(n2 _ 22)k—1 .. (n2 _ k2)

_ l (2n)k+l(4n2 _ 12)k .. (4n2 _ kz) :|llk+l
= 2,‘ nk+l(,n2 —_— 12)k “ e (n2 —_— k2) .
Using (8) and (5), it follows readily that
(10) R, = 2°R;.

Now consider the limiting values of R, and R, as n — . The resulting values
may be considered as asymptotic measures of efficiency. From (9) and (10) it

follows that

lim Ry = 2 and lim R, = 2**.

n->00 n->0
The first result implies that if one has a large number of equally spaced points
in a fixed interval at which observations are made, then two runs of the experi-
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ment will yield the same efficiency of estimation as doubling the number of
equally spaced points in that interval. The second result implies, for example,
that if the polynomial regression curve is of degree 4, then 32 runs of the experi-
ment will be needed to yield the same efficiency of estimation as doubling the
number of points by doubling the interval over which observations are to be
made. It is clear from this second result that the higher the degree of the poly-
nomial the more important it is to extend the range of = values as far as possible.

7. Stationary process model. Denoting the correlation between y; and y; by
pi; , it follows under equal spacing that the correlation function for model (b)
will assume the form

pij = e—ala:;—-z,-l = e—aﬁli—jl

Letting w = ¢ ® and setting o* = 1, since it will always cancel out in the R
ratios, it will be seen that the covariance matrix here is given by

1 w 2 . n—1
w 1 wo e W
S =
wn—-l wn—2 wn—3 . 1

Calculations will show that the inverse of S is given by

1 —w 0 - 0 O]
—w 1+w* —w -+ 0 0
ST=Aal 0 —w 14 0 0
L 0 0 0 - —w 1]

If S is written as the sum of several matrices and then premultiplied by X’ and
postmultiplied by X, and finally brought together again into one matrix, it will
be found that (3) assumes the form

' (k+1)
(1D G.V.l(n d) = (la_liwﬁ)lﬁ-] IB(n, w) |

where B(n, w) is the matrix whose element in row p + 1 and column ¢ 4 1 is
given by

bp+1'q+1 = (w2 + 1) ; 1;1’+q
(12) )
— w2 [#G — 1)+ %G — 1)7] — w’ln® + 1].
2
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Since w = ¢, the value gf G.V. (2n, §/2) can ‘be obtained by replacing n by
2n, 5 by 8/2, and w by +/w in (11). As a result, it will follow that

_ 14w I B(2n, '\/’ITI)) ll/(k+1)

R, oF | B(n, w) Il/(k+l)

Similarly,
: _ | B(zn’ w) |1/(k+1)
Now allow n — «. From (12) it will be observed that the dominating part of

bpi1g41 is (w — 1)*D 77%% As a result, the asymptotic value of the determinant
| B(n, w) | is

R,

(w — 1)*n w—12¢7 - (w— 1D
- 1D2i -2 e = D
w— 12 F @— 1P o = 1P

2k+2

times the determinant in (7), which in turn has
. From the preceding results, it follows that

; - 20k+1
m B < W10V = 12 2w+ 1)
S S R Y

But this is merely (w — 1) )
the asymptotic value An®**?

and

lim R, = 2

For the purpose of seeing the implications of these formulas, consider the nu-
merical value w = ¢ *° = .64. This value implies that the correlation coefficient
between neighboring y values is .64. Calculations yield the values

lim Ry = 101 and lim R, = 2%,

Thus, doubling the number of observation points in a given interval, when there
are already a large number of such points, gives practically no additional esti-
mation information. The value of R, , however, shows that the same asymptotic
efficiency is gained here as in the case of uncorrelated variables. For correlated
variables like those being considered in this section, it is clear that the interval
over which observations are to be made should be extended as far as possible,
but that if it can’t be extended, repeating the experiment is far more efficient
than taking additional observation points.

8. Pure birth process model. Although a pure birth process is a discrete
process with an exponential regression curve, it was selected only for its co-
variance matrix properties which are quite different from those of the two
preceding models.
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If b denotes the constant asymptotic birth rate, y, the population size at time
ty, and y the population size at time ¢ > &, then the conditional probability
function for y, given ¥ , is

-1 — -
Plyy, y; b, t} = (go _ 1) e—lmo(t '°)[1’ — to)]u—t/o.
Using this formula, expected value calculations will show that the covariance of
yiand y;, 7 = 4, is given by

o = GOt _ ),

Under equal spacing as before, & = 0 and ¢; = ¢; hence letting z = €%,
i = Yooz’ — 1).

From this formula it follows that

Jr, i _
(13) T ij+m = Zmdij and gjj = -z—;(i-—l)- (27
2@ —-1)

As a result, the covariance matrix S assumes the form

n—1
o Zon ttt 2 on
N n—2
201 a2 cet 202
S = ; ) .
n—1 -2
2 on 2" g Tnn

The second of formulas (13) enables this matrix to be expressed as the product
of the following two matrices.

_._o;ll_. 0 P 0
Z—l 2 n n—1
z2—1 22—z -+ 2 —2z
0 2"” e 0 z—1 22—=1 ... =72
z -1 : : :
: : z—12-1 ... 2"—1
0 0 Tnn
L yl z"—l_

Some rather lengthy calculations will show that the inverse matrix is given by

. _1 h
i+1 —2 -+ 0 07|, 0 - 0
-1 z+1 0 0
a1 0o -1 0o 0lo L ... o
Tz — 1) : : z
0 0 - z+1-z :
0o 0 -1 1| o L
2
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Additional lengthy computations, similar to those employed in the preceding
section, will show that (3) assumes the form

1 _&™ck, 2 |
GV.(n, 8) G — 15"

where C(n, z) is the matrix whose element in row p + 1 and column ¢ + 1 is
given by
(2P — 1?)(2'] —_ 10) + (3P —_ 2?)(3! — 2q)
2
z 2

L0 == DY@ - = DY

zn—l

Cptl g+1 =

+ .-

For p = 1 or ¢ = 1, ¢pi1441 is defined by en = 2"/(z—1) — 1, and ¢ca =
i =nt—1,¢> 1.
When n — o, the elements of this matrix exclusive of those in the first row
and first column, converge to functions of 2, for z > 1. Let
9ra(2) = lim Cp41 g1 -
Since, for z > 1, ¢ dominates c;1, ¢ > 1, the determinant | c(n, 2)| will possess
the asymptotic value '

2 gn(?«') tee glk(z)
— 1| :
? gkl(z) c gkk(z)
For k < 5 it has been shown that the preceding determinant has the value
Czk(k—l)/2
(z — 1"

where ¢ depends on k& but not on z. Using these results the asymptotic value of
the generalized variance is given by

1 k(k+1) _k(k—1)/2
(14) GV = -gT“Lkmm
Vin, 8) 4 - 1)

From this result it is easily shown that

o (k2+k-+1)/ (k+1)
lim By = (\/kz as l?k Y TeTAT R
e 2"(V2)*

Since (14) does not involve n, it follows that

lim R, =1
As a numerical illustration here, let z = ¢** = 10/9. This value implies that
the correlation between y; and y. is approximately .7 and increases between
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neighboring y values as one moves out on the axis. Calculations here yield the
following limiting values for R, .

B 128 ¢4]
L47i L32l L25[ L20l

lim Rl

n->w0

These limiting values of R, show that some additional estimation information
is gained by doubling the number of points in a fixed interval but that repeating
the experiment yields considerably more information. The limiting value of R,
would seem to indicate that no additional information is gained by extending
the interval. This limiting result, however, is not realistic for small samples as
will be seen in the next section.

9. Numerical results. Since the asymptotic measures of estimation efficiency
obtained in the preceding sections may not be very realistic for small numbers
of observations, some numerical computations were made with the assistance of
high speed computing equipment. The values of w = .64 and z = 10/9 used
previously were used in these computations. Values of n = 5 and n = 10 were
chosen but only the results for n» = 10 are given because some of the n = 5
values appeared questionable and because there were only moderate differences
between the two sets of values. The limiting values of R; and R, are shown in
parentheses adjacent to the computed values. In these computations, adjust-
ments were made in the values of B, and R, to allow for the fact that doubling
the number of points in an interval extends the total interval spanned by the
points when the first point is located at # = 8. These adjustments essentially
kept the spanned interval unchanged. This was accomplished by replacing §/2
by 8(n — 1)/(2n — 1) in the denominator of R, and é by é(2n — 2)/(2n — 1) in
the denominator of R, .

k| Model (a) Model (b) Model (c)
1] 1.90 (2) | 1.03 (1.01) | 1.43 (1.47)
2| 1.81 (2) 1.02 (1.01) 1.25 (1.32)
3| 1.72 (2) 1.02 (1.01) 1.19 (1.25)
4] 1.64 (2) | 1.03 (1.01) | 1.18 (1.20)
k Model (a) Model (b) quel (c)
1 3.80 (4) 2.91 4) 1.83 (1)
2 7.24 (8) 5.01 (8) 1.85 (1)
3| 13.76 (16) 8.94 (16) | 3.21 (1)
4| 26.24 (32) 16.41 (32) 6.15 (1)
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It will be observed that the asymptotic values of R, are poor approximations
for models (b) and (¢). These results seem to indicate that in general one should
always attempt to extend the range over which observations are to be taken as
far as possible and the higher the degree of polynomial the greater is the advan-
tage. They also seem to indicate that if the range can’t be extended, it is con-
siderably more efficient to replicate the experiment than double the number of
observations, particularly if the variables are strongly correlated.
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