A METHOD OF GENERATING BEST ASYMPTOTICALLY NORMAL
ESTIMATES WITH APPLICATION TO THE ESTIMATION OF
BACTERIAL DENSITIES!

By TroMAS S. FERGUSON?
Unaversity of California, Berkeley

0. Summary. Various minimum x2? methods used for generating B.A.N.
estimates are summarized, and a new method which generates B.A.N. estimates
as roots of certain linear forms is introduced and investigated. As a particular
application of the method, the estimation of the bacterial density in an experi-
ment using dilution series is considered.

1. Introduction. The purpose of the present paper is to describe a simple
method by which estimates having the usual asymptotic properties of Best
Asymptotically Normal (B.A.N.) estimates can be obtained.

Originally B.A.N. estimates were introduced by J. Neyman [1] for a situation
in which the underlying probability distributions have a multinomial-like struc-
ture. This was followed by a paper by E. W. Barankin and J. Gurland [2] who
extended the class of estimation problems for which B.A.N. estimates could be
used and also described quite general methods of generation of such estimates.
Other results in this direction have been obtained by C. L. Chiang [3] and L. Le
Cam [4] and W. Taylor [5].

A best asymptotically normal estimate 6* of a parameter 6 is, loosely speaking,
one which is asymptotically normally distributed about the true parameter
value, and which is best in the sense that out of all such asymptotically normal
estimates it has the least possible asymptotic variance. Thus a B.A.N. estimate
will be asymptotically the ‘“most accurate” estimate of a parameter; but the
value to a statistician of obtaining such estimates is even greater than is indicated
by this. In the aforementioned paper of Neyman, a simple method of testing
hypotheses is described which is asymptotically equivalent to the likelihood
ratio test and involves the use of the x2 statistic and a B.A.N. estimate. It
usually turns out that the hardest work in applying this technique is in comput-
ing the estimate. Thus it is important to have a number of different methods for
computing B.AN. estimates available to the applied statistician. The usual
methods of obtaining B.A.N. estimates will be summarized briefly in section 2.

The objective of all these methods is at least in part a practical one and is
essentially two-fold. First, it is hoped that some of these estimates will be
easily computable. Second, even though all these estimates have the same
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asymptotic properties, they may differ widely in their small sample properties,
and it seems reasonable that the choice of the proper estimate to use should
depend in part on the behavior of the estimate for small samples. As a conse-
quence, a large class of estimates with best asymptotic properties is proposed
with the hope that some of the easily computable estimates will have small
sample properties which are reasonably good. Blind adherence to the principle of
maximum likelihood, for example, may lead to more difficult computations and
still yield less accurate estimates than other methods of estimation.

A new approach to generating B.A.N. estimates as roots of linear forms of
certain variables is suggested in section 3. In cases where minimum distance
methods are applicable, the procedure proposed here leads to estimates which are
solutions of equations obtained by simplifying in a suitable manner the equations
obtained by the original methods. By way of an example, section 4 contains an
application of this approach to the problem of estimation of bacterial density.

2. A review of the minimum x? methods of generating B.A.N. estimates.
Since the following methods are to be found in the literature at various levels of
generalities, a complete mathematical description of the hypotheses necessary
for their validity will be omitted.

Let X;, X2, - -+, Xa, - -+ be a sequence of independent identically distributed
s-dimensional random vectors whose distribution depends upon a parameter 6
belonging to an open subset © of k-dimensional Euclidean space R with k < s.
Let P(0) = E(X | 6) be the s-dimensional vector of the expectations of the vector
X, , and let Z(0) = var(X | 8) = E{[X — P(0)] [X — P(8)]'} be the s X s eo-
variance matrix which is assumed to be finite and non-singular for each 6 ¢ ©.
Furthermore, it is assumed that P(6) is a one-to-one bicontinuous map from © to
a subset of s-dimensional Euclidean space with continuous partial derivatives of
the second order. Let Z, be the s-dimensional random vector defined by nZ, =
i X;.

The quadratic form
@.1) nlZ, — P(O)) 2(6)™ [Zn — P(6)]

will be designated by the name of x°. The value 6(Z,) of § which minimizes this
quadratic form will be called the minimum x* estimate of 6. An as example take.
the multinomial case where there are n independent trials each capable of pro-
ducing any of s + 1 possible outcomes. Let the probability on each successive
trial be p;(8) of producing the ith outcome. Let z; denote the proportion of the
trials which result in the 7th outcome. Then

2 (2 — pi0)
(2.2) X = ng 0

is the familiar Pearson x’. It may be shown that (2.2) is algebraically equal to the
%’ of the form (2.1) where the vector Z, is the vector of the first s 2;’s. The ad-
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vantage of (2.1) lies in the fact that it describes a method for estimating pa-
rameters of continuous distributions.

Barankin and Gurland [2] have shown that the minimum ¥ estimate, as de-
fined above, is B.A.N. where the X, have distributions belonging to a Koop-
man’s family, and Z, is a vector of sufficient statistics. When the distributions
under consideration do not form a Koopman’s family with sufficient statistics
Z, , the term B.A.N. estimate is perhaps not entirely justifiable but will be
retained for convenience. The precise definition of B.A.N. estimate to
be adopted is somewhat irrelevant, because the methods reviewed in this sec-
tion and the method developed in section 3, give estimates which have the same
asymptotic behavior as the minimum x* estimates. In section 3.3, the sense in
which the estimates are best is stated more precisely.

Starting with this basic minimum x® estimate, several methods may be used
to generate large classes of estimates. These methods will be described below.
Method I is due essentially to Karl Pearson. Method II as a general method
may be found in Barankin and Gurland [2] and Taylor [5], but special cases
were used earlier (see Berkson [6]). Method III evolved from practical work
and is of unknown authorship. Method IV is due to Neyman [1].

Method I. Modification. Let M,(Z,, ) be an s X s symmetric positive
definite matrix. The quadratic form

(2.3) Qn(0) = nlZ, — P(0)'Mu(Zy, 0)[Z. — P(6)]

will be called the modified or reduced x*. The estimate 6,(Z,) which minimizes
the modified x* with the function M,(Z, , 6) depending only on Z, and not on
6 or n, will be called the minimum modified x* estimate of 6. For example, the
estimate which minimizes the Pearson modified x*,

gf (z: — Pi(0))"

i=1 (24

(24)

is such an estimate.

Under the condition that M,(Z,, ) — =7(6) in probability as » — © when
6 is the true value of the parameter, and under certain regularity conditions,
the minimum modified x* estimate of 6 will have the same asymptotic proper-
ties as the minimum x” estimate of 6 (or simply 6,(Z,) will be B.A.N., accord-
ing to the conventions made.)

Method II. Transformation. Let g(x) be any function from R, to R, with
continuous first partial derivatives

gl(ml sy * xs)
(2.5) g(z) =
gs(xl, ey )
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Let the s X s matrix of first partial derivatives be denoted by

6 . o 0 a
wm wm
(2.6) glx) = :
9
.a_x; gl .o o e Ex_s g8

We shall call the quadratic form
2.7 nlg(Za) — g(P(O)I1G(P(6))Z(0)§(P(6))'T ' lg(Za) — g(P(6))]

the transformed x°. More generally, we may consider the combinations of
Methods I and II, and replace the matrix of the quadratic form (2.7) by an
estimate

(2.8) Qn(0) = nlg(Z,) — g(P(6))' Mu(Z , 0)lg(Za) — g(P(6))].

We assume that M.(Z, , 6) — [§(P(6))Z(0)§(P(6))']" in probability and the
regularity conditions needed for Method I. In addition, one needs regularity
conditions on g, namely that g is a one-to-one bicontinuous map from a neigh-
borhood of P(®) into R,, with continuous partial derivatives of the second
order and that the matrix §(P(6)) is nonsingular for each 6 £ ®. Then the mini-
mum transformed x° estimates, that is the value 67(Z,) of § minimizing (2.7),
will be a B.A.N. estimate of 6.

This method of generating B.A.N. estimates also applies to the x° of (2.2);
for example, letting g.(x) be the real-valued transformation applied to the ¢th
cell
W gi(2:) — gilps(O))*

29) X = )

or modified,

2= 3 ) = g:pO)I

(2.10) o | 2i 9%5(2:)?

The well-known example of Berkson [6] is of the type (2.10).

Many times the functions g; may be chosen so that g:(p«(6)) is a linear func-
tion of the parameters 6;, ---, 6. In such cases finding the value of 6 which
minimizes the x* of equation (2.10) results in solving % linear equations in k
unknowns. The reader may consult the paper of W. Taylor [5] for examples.

Method III. Expansion ina Taylor series about a O(1/n)-consistent estimate.
An estimate 6% of 8 will be called O(~/n)-consistent if \/n(6% — 6) is bounded
in probability uniformly in n when 6 is the true value of the parameter; that
is, for every ¢ > 0 and 6 ¢ ©, there exists a number B so large that for every
n=12, -
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(2.11) P\n|6k—6|>B|6 <e

Many types of estimates satisfy this requirement. For example, under certain
regularity conditions, estimation by the method of moments yields estimates
6% for which v/n(6% — 6) is asymptotically normal when 6 is the true value
of the parameter. This follows from a theorem of Cramér [7], p. 366, which
states that certain functions of the moments are asymptotically normal. Such
asymptotically normal estimates as this are obviously O(\/n)-consistent.

One may try to apply a correction to 6% by an application of the method of
expansion in a Taylor series to get an estimate closer to the minimum x* esti-
mate. It is known, however, that one such application to a O(1/n)-consistent
estimate will give a B.A.N. estimate. More specifically, consider the expansion
of some one of the previously mentioned x*’s (modified and/or transformed) in
a Taylor series to the second degree terms about a O(+/n-consistent estimate
07 of 6. ‘

(2.12) %*(8) = x*(6%) + X°(6%) (0 — 6.) + (6 — 63)'%°(63)(6 — 6%) + Rem.

where x*(6) is the k X 1 vector of first derivatives of x*(6) and x°(6) is the k X %
matrix of second derivatives of x*(6).

9 .2
) 50—1 X (0)
(2.13) X0 = :
3
50—,‘ X2(0)
8 @
2 36 x (0) 36, 36, X )
(2.14) X0 =1 :
9’ 2 9 2
36, 36, X ©) a5 X ()

Instead of finding that value of # which minimizes x°(6), one may discard the
remainder term and find that value 6, of § which minimizes the first three
terms of the expansion. This estimate 8, will then be a B.A.N. estimate of 6.
This method of generating B.A.N. estimates is important because it leads to &
linear equations in k& unknowns and is thus comparatively easy to apply.

Method IV. Linearization of the side conditions. This method, due to Neyman
[1], was proposed with the specific intention of finding a B.A.N. estimate which
could be computed by solving linear equations. In minimizing some x” like (2.1),
one may consider the vector P as the vector of parameters which are subject
to certain restrictions, called side conditions, due to the dependence of P on 6.
If there are s independent components of the vector P and k parameters, there
will be s — k side conditions on the p’s.

(216) fi(pl,""ps):'o for j=1,-",k—8
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One may then minimize x* subject to these side conditions by the method of
Lagrange multipliers. However, a simpler procedure would be to minimize x°
subject to the linearized counterpart of (2.15), that is, the first two terms of
the Taylor series expansion about the point z, . The solution for the estimate
then only requires solution of linear equations. For a fuller account of the sub-
ject, the reader should consult the papers of Neyman and of Barankin and
Gurland. The outline of the method given here is added only for the sake of
completeness and no mention of the method will be made in the later sections
of the paper.

3. B.A.N. estimates as roots of linear forms. The method customarily used to
find a minimum x2 estimate is to differentiate x2 with respect to each of the
parameters separately, set the results equal to zero and solve the resulting system
of simultaneous equations. For example, one may differentiate the x* of the
equation. (2.4) and obtain the-equations

(3.1) —2n 21 & —;;,-(0)) 61:;.0) =0 for j=1,2---,k
1= 1 J

or one may differentiate the x* of equation (2.3) with M,(Z, , 6) a function of
Z., only, such that M,(Z,) — T(6) in probability and the regularity conditions
hold, and obtain

(3.2) —nP(0)M(Z,)(Z, — P(6)) = 0
where P(6) is the k X s matrix of first partial derivatives of the vector P(6),

AP1(0) . dP,(6)
a6, a6,

(3.3) P =| :
dP:(0) . OP,(O)
30, 30,

and the 0 is the k¥ X 1 vector with a zero term in each component so that (3.2)
represents k equations in & unknowns.

Well-chosen roots to equations such as (3.1) and (3.2) are B.A.N. estimates
of the unknown parameters. This suggests that instead of starting with a quad-
ratic form in (Z, — P(6)) and finding values of @ which make the form a mini-
mum, it may be simpler to start with an arbitrary linear form in (Z, — P(6))
and find the roots. Roots of certain such linear forms, namely, (3.1) and (3.2),
will be B.A.N. estimates. Furthermore, such a method of generating B.A.N.
estimates will probably satisfy the requirement that they be easy to compute.
It is the purpose of this section to investigate the asymptotic distribution of
roots of linear forms in (Z, — P(6)), and the conditions for such roots to be
B.A.N. estimates of the parameters.

3.1. Preliminary lemma. This section contains an implicit function theorem
needed for the proof of the main theorem. First an implicit function theorem
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which can be found in Pierpont [8], p. 293, for example is stated, from which
the lemma of this section will follow. The unicity of the implicit function is stated
in a somewhat stronger form than found in Pierpont. This strengthening can be
obtained by modifying his proof slightly and the details of the proof need not
be given here.

Let F(z, u) be a function of variables x € R, and u & Ry with values in Ry . Let
a € R, and b € Ry , and assume that

(i) F(x, u) is continuous and F.(x, u) exists and is continuous in a neighbor-
hood of the point (a, b).

(ii) F(a, b) = 0 and F.(a, b) is nonsingular. Then, there exists a neighborhood
N of a, and a function ¢(x) from R, to Ry , such that

(1) ¢(x) is continuous in N,

(2) ¢(a) = b,

3) F(z, ¢(x)) = O for x e N, and

(4) (uniqueness) there exists a neighborhood N’ of the point b such that for
ueN and z e N, F(z, a) # 0 unless u = ¢(x). ‘

In the above theorem F,(z, u) represents the k¥ X k matrix of partial deriva-
tives of F(z, u) with respect to u, as in equation (3.3). The assumption of con-
tinuity of F.(z, u) means that each component of the matrix is assumed to be
continuous.

The following lemma is an extension of this theorem, similar to that found
in Graves [9], p. 144, to the situation in which F(z, u) is known to vanish along
some curve in R, , rather than just at one point.

LeEMMA. Let F(z, u) be a function of variables x € R, and u & Ry with values in
Ry, k =< s. Let p(u) be a function from some set D C Ry to R, , and assume that

(i) D s an open set,

(ii) p(u) 7s one-to-one and inversely continuous from D into R, ,

(iii) there is a neighborhood of the curve {(p(u), u):u & D} in which F(x, u) is
continuous and F,(z, u) exists and is continuous.

@iv) F(p(u), u) = 0 and F.(p(u), u) is nonsingular for every u & D.

Then, there exists a neighborhood N of the set S = {p(u):u e D} and a func-
tion ¢(x) from R, to Ry such that

(a) ¢(x) s continuous in N,

(b) ¢(p(v)) = u for u e D,

(¢) F(z, ¢(x)) = 0 for x ¢ N, and

(d) there exists a meighborhood of the curve {(p(u), u):u € D} in which the
only zeros of the function F(x, u) are the points (x, ¢(x)).

Proor. From the previous implicit function theorem, for every u ¢ D, there
is a neighborhood N, of the point p(u) and a function ¢.(z) from R, to R:
such that

(1) ¢u(x) is continuous in N, ,

2) ¢u(p(u)) = u,

3) F(x, ¢pu(x)) = 0 for z £ Npuy , and

(4) for y in some neighborhood N, of the point u, and x & N p()

F(z,y) # 0 unless y = ¢u(z).
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Using the inverse continuity of the function p(u), and the continuity of the
function ¢.(z), we may replace the neighborhoods N,(u) by spherical neigh-
borhoods N, with the two additional properties that

5) if p(w) e N ;(u,) for some u; and u, £ D, then u; € Ny,
and

(6) if z &€ Ny for some u & D, then ¢,(z) £ N..

Now consider spherical nelghborhoods Ny with radii equal to 14 that of
N, , andlet N denote Uy.pNwwy Theset N is then obviously a neighborhood
of the set S.

We will show that if 2o € Npwy N Nowy) then @, (T0) = ¢u,(xo) For since
Npwp n Npwy is not empty, either p(u;) & Ny or p(us) & Npwy . Suppose
without loss of generality that the former is true; then since u; ¢ N,, and

F(p(w), ¢u,(p(w1))) = 0,

we have ¢.,(p(w1)) = u;. Furthermore, for z eNpwp N N, Pus) s ¢,,,(x) is con-
tinuous and satisfies F(x, ¢u,(z)) = 0; but ¢.,,(x) eN,, for z e N, p@p and thus
¢u,(z) is the unique function, continuous in N, and such that

$u(P(w)) =w  and  F(z, ¢,(z)) = 0.

Hence, ¢u,(20) = ¢u,(20).

Thus for z ¢ N we may define ¢(x) = ¢.(z) for any u for which z ¢ Ny ,
since such a definition is unique. Now parts (a), (b), and (c) of the conclusion
of the lemma are obvious. As for (d), the neighborhood can be chosen to be
UueD[NZ(u) X Nu]-

3.2. The main theorem. Let Z,,n = 1, 2, - - - be a sequence of s-dimensional
random vectors whose distribution depends upon a parameter 8 in some set
® C R, k < s. Let P(0) be a function from O to R, .

AssumpTioN 1. © s an open set.

AssuMPTION 2. £{V/n(Z, — P(0))| 6} — £(Z) where Z is a normal random
vector with mean zero and variance-covariance matrix =(6). (That 7s;

EZ = 0, EZZ' = Z(6).)

The convergence used above is convergence in law or in distribution. As-
sumption 2 states that when 6 is the true value of the parameter, the distribu-
tion of v/n(Z, — P(6)) converges to a normal distribution with mean zero and
variance-covariance matrix =(8). The law degenerate at some point a will be
denoted by £(a). Thus £(X.) — £(a) means that X, converges in probability
to a.

AssuMpTION 3. The mapping P(6) from © into R, s homeomorphic (that is,
one-to-one and bicontinuous) and continuously differentiable.

Let f(z, 6) be a k X s matrix for each z ¢ R, and 6 € ©.

AssuMpTION 4. There is a neighborhood No C R, X © of the set

{(P(6), 0):6 £ O}
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within which f(x, 6) and 3/36,f(x, 6) for j = 1, 2, --- , k are continuous jointly
in (z, 9).

Let b() = f(P(6), 6) and let P(8) be the k X s matrix of partial derivatives
of P(6), given by equation (3.3).

AssumptioN 5. The matriz P(6)b(6)' is nonstngular for each 6 € ©.

Let

(34) F(z, 6) = f(=z, 0)(= — P(6)).

This is the linear form which will be used in the sequel to generate B.A.N.
estimates of the parameter . The following theorem shows immediately that
the root to the equation F(Z,, 6) = 0 will be a O(\/n)-consistent estimate of
0.

TurEOREM 1. Under assumptions 1 through 5, there exists a neighborhood N of
the set S = {P(0):0 ¢ ©} and a unique function 8(x) from R, to Ry continuous
in N, such that 6(P(8)) = 6 for 6 ¢ ©, and F(z, 6(x)) = 0 for = ¢ N. Moreover,
£{Vnb(Z,) — 60)| 8} — £(Y) where Y is a normal random vector with mean
zero and variance-covariance matrix given by

[B(6)P(6)'T'b(6)=(8)b(6)'[P(8)b(6)]

Proor. F(P(6), §) = 0 and
(3.5) Fo(z, 0) = fa(z, 6)(x — P(6)) — P(6)f(x, 0)’

where fo(x, 0) represents the k X k X s cubic matrix of partial derivatives of the
k X s matrix f(z, 8) with respect to 8. To avoid confusion we will write out the
first term of this difference completely. Denote the function in the sth row,
jth column of f(x, 6) by fi;(z, 6), and let P;(0) and z; represent the jth com-
ponent of the vectors P(6) and z. Then,

aJ aJ
. a—elflj a—elfsj
(3.6) folw, )@ — PO) = 2| (z; — P;(6)).
= i) i)
a’:ﬁj e 50_,,ij
It is now easily checked that formula (3.5) holds. Hence,
3.7 Fy(P(6), 6) = —P(8)b(6)’

which, by assumption, is nonsingular for every 6 £ ®. Thus the hypotheses of
the lemma of the previous section are satisfied and the first part of the theorem
is proved.

To prove the second part, expand F(z, 6) about the point 8(z) to one term
using the formula

(38) Fl60) = Fls,0() + [ [ Futz, 6@) + 20 - 4} dx]' 0 — (=)
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which may easily be checked. By the integral of a matrix we mean the matrix
of the integrals of each term separately. For each 6 ¢ ®, formula (3.8) is valid
whenever z is sufficiently close to p(6), so that (x, 8(x)) is in a spherical neigh-
borhood of (p(6), 6) contained entirely in No. We may replace z by Z, in (3.8)
and multiply both sides by \/7.

Vn [— fo Fo{lZn,0(Z,) + N6 — 6(Z,))} dx]' 6(Z,) — 6)
= f(Za ,0) \/'n (Zs — P(6)).

We now invoke the theorems of Slutsky (see [10], section 2, theorem 2, or
[4]). From assumption 1, £(Z,|8) — £(P(8)). Hence by Slutsky’s theorem,
since f(z, ) is continuous in a neighborhood of (p(6), 6),

(3.9)

(3.10) £(f(Zn , 0)| 6) — L(f(P(0), 6)) = £(b(6)).
Slutsky’s theorem also gives
(3.11) L£(f(Zn , 0Vn(Zn — P(6))] 6) — £(b(6)2)

where Z is a normal vector with zero mean and variance-covariance matrix
2(6). Since £(Z.|6) — £(P(0)) and £(6(Z,)| 6) — £(b(P(6)) = £(6), we
may apply the Lebesgue bounded convergence theorem to the integral in (3.9).

43{ fo 1 FolZ.,0(Z,) + N0 — 8(Z,))] dxlo} - ,e{ fo l Fo[P(9), 6] d)\}

= &{F:(P(0),0)} = £{—P(6)b(8)'}

(3.12)

by equation (3.7). Another application of Slutsky’s theorem allows us to con-
clude

(3.13) £{Vn(b(Z) — 6)| 6} — £{[b(O)P(6)7b(6)Z]}.

Denoting [b(6)P(6)']7'b(6)Z by Y, we see that Y is a normal random vector,
with mean zero and covariance matrix

(3.14) EYY' = E[b(6)P(6)]7'b(6)ZZ"b(6)'[P(6)b(6)] "
= [b(e)P(o)']“b(O)z(0)b(0)'lP(0)b(0)f]“.

3.3. Applications. The theorem just proved allows some immediate inferences.
The important point to notice in this theorem is that the asymptotic distribu-
tion of /n(6(Z,) — 6) depends on the function f(z, 6) only through its values
along the curve {(P(6), 6):0 € ®}. Thus if the linear form

F(Zn ’ 0) = f(Zn ) 0)(Zn - P(O))
has a root which is already a B.A.N. estimate of 6, any linear form

g(Zﬂ ’ 0)(Zn - P(O)),
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in which the function f(x, 6) is replaced by any function g(z, ) satisfying as-
sumption 4 and for which g(P(6), 8) = f(P(6), 6), will have a root which is also
a B.A.N. estimate of 6, since the asymptotic distribution of the two roots will
be the same.

For example, equation (3.2) (neglecting the factor n which is immaterial as
far as roots are concerned) is a linear form of the type f(Z, , 6)(Z, — P(6)) for
which

(3.15) " f(Za, 6) = P(O)M(Z.).

Since M(Z.) converges in probability to =(6)™" when 6 is the true value of the
parameter, M(P(6)) = =(6)"" so that

(3.16) b(8) = P(6)=(6)™"
Now consider functions
(3.17) fi(Zn,6) = b(6) and fo(Z,.,0) = L(Z.)M(Z,)

where L is a_matrix continuous in a neighborhood of {P(8):6 ¢ ®}, such that
L(P(6)) = P(6). If fi(Z., 6) is used, we must also assume that b(8) has a con-
tinuous derivative. In these circumstances, whenever the root to equation (3.2)
is a B.A.N. estimate, roots to the linear forms involving fi(Z, , 6) and fo(Z, , )
will be B.A.N. also.

Now we will show directly the exact conditions under which there will be a
root of a linear form which will be “best” out of the class of all roots of linear
forms; that is, the exact conditions under which there is a value of b(6) which
minimizes the variance (3.14).

Of two n by n matrices, 4 and B, A will be said to be smaller than B, in
symbols A < B, if and only if B — A is positive semi-definite; that is, if

Z[B— Az =20

for every n-dimensional vector z. Thus of two unbiased estimates of a vector
parameter 6, T; and T,, with covariance matrices respectively 4 and B, T,
would be preferred to T, if A < B, since the unbiased estimate z'T; of the
parameter 2’60 will have a smaller variance than the unbiased estimate z'T, of

the same parameter.
TurorEM 2. If in addition to assumptions 1 through 5 there exists an s by s
nonsingular matriz Zo(0) such that

(3.18) 2(0)Z(0)P(6)" = P(6)

then the asymptotic covariance matriz of 6(Z,) taken on its minimum value when
b(6) = P(0)Z(0). The minimum value is then [P(8)Zo(6)P(6)™".

Proor. For simplicity of notation the ¢ will be omitted. From assumption
5, P is of full rank so that [PZoP] is nonsingular. The inequality
(3.19)  (V[PY]™ — ZP'[PZPTHZ(MIPY]™ — 2P [PZPT™) = 0

which holds since 2 is positive semi-definite, yields
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(3.20) LRV [PV — [PZPT 2 0.
Yet it is easily checked that equality is attained if b = PZ;. ged.

The assumption of the existence of a matrix Zo(6) satisfying (3.18) holds for
example when Z(6) is nonsingular. Then b(9) = P(6)Z(8)™" as was found in
equation (3.16). However, in other important cases, for example in the multi-
nomial case with the x* of equation (2.2), the matrix =() is singular. The fol-
lowing lemma which may be proved without difficulty, will perhaps be of aid
in checking whether a =, satisfying (3.18) exists at all.

LEmMA. In order that there exist a nonsingular matrix Zo(6) satisfying (3.18),
it is necessary and sufficient that the range space of P(8) be contained in the range
space of Z(0): that is, for every vector x there exists a vector y(6) such that

=2(0)y(6) = P(6)'x.

In certain cases one can find the matrix Zo which satisfies (3.18). We shall
do it now for the multinomial case. In this case the vector P(6) is simply the
vector of cell probabilities, and is s + 1 dimensional. The matrix =(0) is found
to be

p(0) — pi6) —p:@O)p(8) -+ —p1(8)Pesa(6)
(321) =(0) = —p1.(0)p2(0) pz(o) - pg(O)

—p(e)pa+1(0) cee pa+1(0) - P§+1(0)
which may be expressed simply as
(3.22) 2(6) = B(6) — P(9)P(6)

where B(6) is the diagonal matrix

m@ 0 .- 0
0 p(6)

(3.23) B(6) =

0 p.+1(0)
Then, as suggested by the x* of (2.2), put Z(6) = B(6)™".
(3.24) =(8)Z(0)P(6) = B(6)B(6)'P(6)' — P(6)P(6)'B(6)'P(6)".
It is easily seen that

i s+1 9 s+1 F) s+1 F)
625 POBOTPO = (3 5 00, 5 0 90, -, 53 :0i0)).

This vector must be zero since Y i1 p:(6) = 1. Hence, the equality (3.18) is
satisfied. Thus applying Theorem 2, roots of the linear form

s+1
(326) El (zi - pi(o))fij('gl: cr oty Sstl, 0) =0 .7 =12-.- k ’

will be “best” when fi;(p1(6), - - , De1(8), 0) = 8/00; log pi(6).
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It may further be shown in the multinomial case, that if the f;;j(z, ) are
chosen to be independent of z, and equal to 8/36) log p:(6), equation (3.26) will
b the derivative of the log of the likelihood function set equal to zero, so that
one has immediately that the maximum likelihood estimate, in addition to the
minimum modified x* estimate, is an estimate which is given by the root of a
certain linear form. One would expect that the linear form (3.26) in which the
functions f;; do not depend on 6 at all would be somewhat easier to solve for 6.
It is this type of linear form which is suggested in section 4 as a method for
estimating the bacterial density in a liquid.

We will now apply the preceding theorem to the various minimum x* methods
discussed previously.

Application to the transformed . The method of generating B.A.N. estimates
described in Theorems 1 and 2 also applies easily to the transformed x* of equa-
tions (2.8) and (2.10). For example, the derivative of the x* of equation (2.8)
with T'(Z,) depending on Z, only, and not on 6, is found to be

(327) 2% = nPOIPOIT(Z)G(Z) - 9(PO)).

Assumption 1 of Theorem 1 becomes in this case

(3.28) £{V/nlg(Z.) — g(P(6))]] 6} — £(2)

where Z is a normal random vector with zero mean and variance-covariance
matrix [§(P(6))Z(8)§(P(6))']. This may easily be checked by expanding g(Z,)
in a Taylor series about the point P(6), and invoking asymptotic normality
of v/n(Z, — P(6)). The only requirement on the function g(z) is that it have
a continuous derivative in a neighborhood of the curve {P(8):0 ¢ ©}. If in
addition g(P(6)) is nonsingular for each 0 & ©, [§(P(8))Z(0)g(P(6))]~* will exist
and b(6) is found to be

(329) b(8) = P(6)§(P(0))§(P(6))Z(6)g(P(6))T ™.

Thus, if the root to equation (3.27) is a B.A.N. estimate, the root to the linear
form
(3.30) f(Zn, 6)(9(Za) — g(P(0)) = O
will also be a B.A.N. estimate, provided that f satisfies Assumption 4, and that
f(P(6), 6) = b(6).

The linear form corresponding to the transformed multinomial x* of (2.10)

may be computed as before. It becomes
s+1

(3.31) E lgi(zd) — g:i(@@O)fis(z1, -+ 2e41,0) =0  F=1,2,---k

where

(332 o), - pen6), 6) = [5‘} p,-<e)] .



BEST ASYMPTOTICALLY NORMAL ESTIMATES 1059

Under assumptions 1 through 5, and the assumptions that each g;(z) is con-
tinuous in a neighborhood of the curve {z:xz = pi(6), 6 ¢ @} and that

g:(p«(8)) = 0,

the roots to equation (3.31) will be B.A.N. estimates of the parameters.

Application to the expansion of x* in a Taylor series. Let 6% be a 0(+/n)-con-
sistent estimate of the parameter 6. To find the minimum value of the right
hand side of equation (2.12) without the remainder term, we take a derivative
and solve for the root §.

(3.33) bn = 6% — %2(02)7%(6)

If we use the modified x* of equation (2.3) for this procedure with M a function
of Z, only, for example M(Z,) = 2(6%)7", the first two derivatives are

X'(8) = 2nP(0)Z(6%) " (Z. — P(6))
X(6) = 2nP(0)Z(67) P (8)' — 2nB(8)2(07) " (Zn — P(6)).

where P(6) is the ¥ X k X s cubic matrix of second partial derivatives of the
vector P(6).

If, on the other hand, we take the linear form with the function f(Z. , 6) not
depending on 6, say to be P(65)2(6%)", and expand it about 6% to the first
power and solve for 8, we have

(8.35) b = O + [P(6M)Z(6m) " P(8m)] " P(6m)Z(6%) " (Zn — P(67)).

If one compares the estimates (3.35) with the estimates (3.33) with equations
(3.34) substituted, one sees that the former require less computation, and that
by the amount in the second term of the expression for y’(6), involving all the
second partial derivatives of the vector P(6). Furthermore, computation of
[P(6%)=(6%) " P(07)]" would give an estimate of the limiting variance-covari-
ance matrix of the B.A.N. estimate 4, .

This method would be good for example in estimating the parameters of a
Neyman type A distribution, where the vector P(6) is a rather complicated
function of the parameters, and other methods of getting B.A.N. estimates
are rather difficult. This method has been applied by Robert Read of the Statis-
tical Laboratory of the University of California, to estimating the parameters
in a probabilistic model describing ionization in a cloud chamber, using as the
preliminary estimates, those given by the method of moments. It has also been
applied by Dr. Irene Rosenthal of the Psychology Department at the Univer-
sity of California, to estimate the parameters of a latent structure, using as first
estimates those of Lazarsfeld [11].

4. Application to the problem of estimating bacterial density by the dilution
method. The method of estimating the bacterial density of a liquid by taking
samples in fermentation tubes at several levels of dilution of the liquid is well
known. As far back as 1915 [12] the maximum likelihood estimate, called the

(3.34)
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most probable number (M.P.N.) by Biometricians, was suggested for the prob-
lem, and is still being used today in Public Health for water, milk, and sewage
analysis. This and other estimates have been studied by Fisher [13], Halvorson
and Ziegler [14], and Matuszewski, Neyman, and Supinska [15].

The situation is the following. We are given a large volume V of a liquid con-
taining a large number N of bacteria, and we are interested in estimating the
bacterial density A = N/V, the number of bacteria per unit volume. A sample -
of size a unit volume is withdrawn and tested by some device such as placing
the sample in a fermentation tube to see if any bacteria are present. It is as-
sumed that each bacterium acts independently and that each has the same
probability a/V of being in the sample. Thus the number of bacteria in the
sample will be binomially distributed with probability «/V and size N; how-
ever, if a/V is small and N is large the distribution may conveniently be re-
placed by a Poisson with parameter Na/V = o). The probability that no
bacteria appear in the sample is then p = ¢~*. If n independent samples of size
o are withdrawn and tested, the number K of sterile samples will be binomially
distributed with probability p and size », and may be used to estimate the
parameter \. However, the value of the experiment depends to a great extent
on choosing a so that p = ¢~ will be in a good estimating range, for if p is
too small or too close to one, one will obtain too many fertile or too many sterile
samples to be able to estimate A with much accuracy. And since A is unknown
it will usually be impossible to choose « so that ¢~ will be moderately be-
tween zero and one. So one usually takes several sizes of sample volumes o ,
@z, **-, a,, called dilution levels, and numbers of samples n;, n,, -+, n, at
each of the levels, with the hope that at least one of the ¢~ ** will be in a good
estimating range. Then the numbers k; , ks, - - - , ks , of sterile samples at each
of the levels will be used to estimate .

The most frequently used B.A.N. estimate of the bactenal density seems to
be the maximum likelihood estimate, since the minimum x* estimates appear
to be much more difficult to compute. The maximum likelihood estimate of A
is that value of A which is a root of the equation

(ni - kz)ai =

(4.1) ;_:1 a-— e“""‘) Enoai

Methods of solving this equation have been discussed by Halvorson and
Zeigler [14], Barkworth and Irwin [16], and Finney [17]. Tables of the estimate
for certain situations may be found in Halvorson and Zeigler and in Hoskins
[18].

An application of the methods of the previous section will yield a B. A N.
estimate which is slightly easier to compute. Linear forms which lead to B.A.N.
estimates are of the type

(42) § nafile, Nz — 6
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where z; represents the frequency of sterile tubes at the 7th level of dilution,
2: = ki/n;, and fi(2, \) converges in probability to ai(1 — ¢ *™)™, 2 represent-

ing the vector (z;, ---, 2,). Equation (4.2) with fi(¢, \) always equal to
ai(l . e—a;)\)—l

is equivalent to the maximum likelihood equation (4.1).

We would like to replace fi(2, \) in equation (4.2) completely by an estimate,
that is, fi(2, A) = a:;/(1 — 2;), but we must take care of the cases in which z;
is equal to one. So we may choose fi(z, \) = a;/(1 — 2;) if z; # 1 and

filz, N) = es(1 — N

if z; = 1. This will lead to a B.A.N. estimate since eventually as the n; get
large without bound, all the z; will be different from one. We have the equation

(4-3) E n; '—‘ P —a,)\) + E nia; = 0.

zy#1 - i z2i=1

Written in simpler form, thls equation becomes

(4.4) > et Z Mg

2571 1 — %3 zi5%1
This equation is sunpler to solve than equatlon (4.1) in that it only requires
tables of ¢ © which are readily available, While equation (4.1) requires for its
solution the computation of (1 — ¢ **)™ separately for each ¢ or tables of
(€ — 1) or 1 — €)', The method by which it is suggested that (4.4) be
solved is the same as that suggested by other authors in connection with the
solution of (4.1), and that is Newton’s method. For a function f(x) with a con-
tinuous first derivative, if xo is taken to be the initial guess at the solution of
f(x) = 0, z, is defined inductively by

’zz+ chaz

_ _ f (xn—l)
(4.5) Tp = Tp- f’ (x”_l) .
Applying this procedure to equation (4.4), we obtain the inductive formula
Nn; a; e—a.-x,._, _ Z n; o Z N o

(46) py— x”_l + 2551 1- 2i zi71 1— Z; z4=1

N; af —a;An—1

—— "¢

2;5%1 1- 2

The author has made a numerlcal study of the small sample properties of
this estimate, the minimum x* estimate and the maximum likelihood estimate,
which _he hopes to publish at a later date. An indication is given in this study
that in general the estimate given by equation (4.4) has slightly better small
sample properties in the sense of bias and root mean square error, than either
the maximum likelihood or the minimum x* estimate.

In conclusion, I would like to express my thanks to Professor L. Le Cam for .
his generous advice and helpful discussions concerning this paper.
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