ESTIMATION OF THE MEDIANS FOR DEPENDENT
VARIABLES

By Onive JEan Dunnt!

Statistical Laboratory, Iowa State College

1. Summary. Joint intervals of bounded confidence are suggested for the
medians of a bivariate population with continuous marginal distributions.
The two intervals are of the classic type based on sample order statistics.

2. Introduction. The problem considered in this paper is that of using a non-
parametric method to estimate by a confidence set the unknown medians of
two dependent variables. In various types of research, it is convenient to con-
sider a sample of n individuals and to take measurements on the same 7 in-
dividuals at two different times or at two different levels of treatment. The two
measurements on the same individual cannot be assumed to be independent,
so that it is appropriate to consider the 2n measurements as a sample of size
n from a bivariate distribution.

Let the two variables y; , y. with medians »,, v, have the c.d.f. (cumulative
distribution function) F(y:, y2). By a set of simultaneous confidence intervals
of bounded confidence level 1 — « for », , »; is meant a set of four functions of
the sample values, say g1, g2, b1, h2, such that

Pgpr<n<hm,g2<m<h)=1l-—a

The probability relationship must hold for all underlying distributions in a
specified set of distributions. In this paper the specified set will consist of all
bivariate distributions whose marginals have continuous c.d.f.’s.

The method used in this paper to obtain confidence intervals uses order
statistics and requires only the assumption that the marginal distributions be
continuous.

3. Confidence intervals for the medians of a bivariate distribution. Let the
c.df. of the variables y1, y2 be F(y1, y2) and let the two marginal distributions
be Fi(y1) and Fa(ys), both of which are continuous.

A random sample of n observations will be denoted by (yu, ¥a),

+ (%1, Yon). For ¢ = 1 and 2, the set yu, -+, ¥in will be reordered ftom
smallest to largest and renamed 2, - -+, 2in. Thus 25 < 22 £ --+ £ 2;, for
1 = 1 or 2. The #; and 2;; need not belong to the same observation.

Two positive integers, r and s, such that 2r + s = n, are selected. Let E; be
the event that 2z < v; < 2irqe41 for ¢ = 1, 2, Then, forz = 1, 2,

r4-8
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If the variables were independent, probabilities could be multiplied, so that
P(E\E;) = 1 — a. This would give a set of intervals of exact confidence level
for » and »:, namely 2;, t0 21,4541 fOT ¥1, 22, £0 22,5451 fOT ¥2.

For dependent variables, the same set of intervals may be used as a set with
bounded confidence level for it can be shown that P(E\E;) = 1 — a. It should
be noted that symmetric order statistics have been used, and indeed the result
would not hold otherwise.

The following proof establishes the necessary inequality.

Tuaeorem. P(E\E;) = P(E,)P(E,).

Proor. Since P(E\E;) = P(E,| E\)P(E,), it will be sufficient to prove that
P(E; | E\) =z P(E»).

If for a certain observation, y; > », then let the conditional probability
that y»; > ». (this will be referred to as the probability of a “success’) be de-
noted by p. Then using the fact that Fi(y1)) = Fa(v;) = 3:

2 P = P(y2; > w2 | th; > ») = 2F(n1, m).

Similarly, if it is known that y;; < »i, then let g be the conditional prob-
ability that y.; > v (probability of a “success’). Then

(3) q = P(yzj > V2lylj < Vl) =1-—- 2F(V1, 1/2). Thus, y4 + q = 1.

If it is known that E; has occurred, then r + % observations have y; < »,
and so have a conditional probability of success of ¢, where 2 may be 0, 1, -- - s;
r + s — © observations have y;; > », and so have a conditional probability of
success of p.

To obtain a generating function for the probabilities of various numbers of
successes, conditioned by the fact that yi» < i < ¥1,r4441, One may proceed
as follows. Let E;(¢) be the event that E; occurs with r + ¢ observations having
Y15 <n. Then El = U; .El(l)

Let Y. be the number of successes in the r + ¢ observations which have
117 < » ;let Y5 be the number of successesin the r 4+ s — 7 observations which
have y1; > v ;let Z = Y. + Y be the total number of successes. Then

B (t” U El(a) = 3 B0 | B@)-P(EG) | B
4 -
= ; E(t”| B\()) - P(E\(6))/P(Ey).

Since under the condition E1(z), Y . and Y are independent,
®  E(FIUEG) = 5 BE< | BEOEE | RO PEG)/PE).

The generating function G for the conditional probabilities of various num-
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bers of successes, given that 21, < » < 21,r4e41, is, finally,

. 1
® ¢=C X eFor =D

(p + qt)r+i(q + pt)r+c—i,

where

/;=o r+ z)'(r +s—=9!
Ifaj,j=0,1,---,n,is defined as the coefficient of ¢ in G, then

(7) G = 'E“o a; tl )
and

r4-8
(®) P(E: | E) = 2 a;.

Ju=r

The task now is to show that P(E: | E;) has a minimum at p = 1. To do
this, the derivative of G is obtained indirectly by differentiating equation (6)
with respect to p, and then manipulating the derivative, G, , as follows:

o &= OB T G+ g g

—(r+s—D@+ )@+ pt) Y

R )
T — DI + 9)!

Let C* = (C/(r — 1)!(r + s)!). Then
Gy = C*1 = O)(p + @) (¢ + 2 (@™ — p**) + (™)pa(e™™ — "Mt
+ GNPCQ@ = T+ -+ YT — e
+ GMpgp™ = ¢+ @ — ¢
(10) =C*1 - t)(g — p)(@ + ¢) (g + pt) [bo(1 — 1)
4+ bit(l — 7 + bP(1 — 7 + -- -]
= C*1 = g — )@ + @) (g + pt)'[bo + (bo + by)t
+ (bo + by + b) + - 4 (bo + by + b + (Bo + b))t + bt

Here b; = (™M@ + ¢ 'p + -+ + p"™); hence the partial sums
of the b;’s appearing as coefficients within the preceding square brackets are
positive and (excluding the trivial cases p = 0 or 1) they increase toward the
center coefficient(s).

Multiplication of the polynomial within the square brackets by

(p+ ¢) g+ pt)

@+ )@+ p) g + p)™ — (0 + @)™
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can be accomplished by successive multiplications by (p + ¢t)(¢ + pt), and it
is easily verified that each multiplication yields a polynomial whose coefficients
increase toward the center coefficient(s). Thus

(11) G, =CHg—pQA —2t+ )
(co+ at + et + -+ + eat™™ + ™ + eot™)
= C*q — p)(do +7dit + dof® + -+ + dat™* + dut" + dot™).

Here d; = ¢; — 2¢j—1 + ¢j—2,forj = 0, 1, - -+ | and it is understood that c_; =
C2 = U.

The derivative with respect to p of the conditional probability P(E; | E;) is
then >_its C*(¢ — p) d; = 2C*(g — p)(¢,—2 — €r_1). Since ¢,z — ¢,y is always
negative, the derivative is positive, zero, or negative according to whether
p>%p=3%o0rp <% Thus P(E:|E;) has a minimum at p = 3}, and
P(E\E;) = P(E))P(E).

Since E\E; C E,, one may further write P(E,) = P(E.E;) =2 P(E\)P(E,).
The confidence level for the intervals zi, to 21,4541, 22 tO 220 t0 2204441 Can
actually be as high as (1 — a)"? (for a distribution function such that p=20
orp = 1) or aslow as (1 — «) (when p = }).

4. Evaluation. One way to compare sets of confidence intervals is on the
basis of their lengths, or the expected values of their lengths. I shall exhibit
some length comparisons when y;, y, are jbintly normally distributed with
means (or medians) », v, variances o;, o3, and arbitrary co-variance. In
Table I, the intervals for the medians obtained by the method of this paper
(Method I) are compared with three sets of intervals for the means of a bi-
variate normal distribution (Methods II and III and IV) obtained in another
paper [1]. It should be mentioned that all four methods lead to intervals of
bounded confidence.

The figures given in the body of the table are values of (n"?/¢;)E(3l;), where
l; is the length of the confidence interval for »;, 7 = 1 or 2. Values of 1 — «
(which for Method I cannot be chosen arbitrarily) have been selected as close
as possible to .95.

Method II (section 4.2 in [1]), which uses Hotelling’s T distribution, is similar
to Method I in that no assumptions need be made concerning the variances.
When 7 is small, the intervals are seen to be slightly longer on the average
for II than for I. '

Method III, based on the Student ¢ distribution, requires that the variances
be equal, though they may be unknown. These intervals are seen to be some-
what shorter than those from Method I. Method III is found in section 7.2 of
[1].

In Method 1V, the variances are assumed to be known and the intervals ob-
tained (the method of section 7.1 in [1]) are the shortest possible intervals for
means of the bivariate normal distribution when nothing is known about the



196 OLIVE JEAN DUNN

TABLE I

Comparison of Expected Values of Lengths of Confidence Intervals
for the Means of a Bivariate Normal Distribution

VI g (141 for:
g

Method III: .

_ R Method I: Method I,I: Variances l%ethod Iv:

" l-a a-a Order Statistics Hotdll_ms 8 glxiknE?lv‘m Kamces
6 .939 .969 zi1 t0 24 3.10 3.72 2.83 2.16
8 .984 .992 21 10 248 4.03 4.40 3.54 2.65
10 .958 .979 zi2 t0 2y 3.17 3.21 2.72 . 2.31
20 .976 .988 2i5 tO 2438 3.33 3.12 2.77 2.51
100 .958 .979 Ziso tO Ziee 2.93 2.57 2.33 2.31

l; = length of the confidence interval for u; (or »:), ¢ = 1, 2.
Method I: E(}l;) computed using the expected value of order statistics in [2].
Method II: The intervals are §; == (&:;/v/n)ca, t = 1, 2, where c, is the 1 — a point
in the distribution of Hotelling’s T, and &} = 2/ (¥i; — §:)%/(n — 1),4 = 1, 2.
Method III: The intervals are §; &= (#1/4/n)ce , t = 1, 2, where c, is the
1+ @1-av/2
point of the Student ¢ distribution with n — 1 degrees of freedom, and
3 =2 (i — 9 (n = 1)
Method IV: The intervals are §; = (#:/A\/%)ca,t = 1, 2, where ¢, is the
14+ Q- a)e)/2

point of the standard normal distribution.

covariance. They thus make a useful standard for purposes of comparison.
These “best” intervals are considerably shorter than those from Method I, but
this must be balanced against the fact that for the latter method no assump-
tions are necessary concerning the variance or concerning distributional form
(except for continuity).

The fact that Method I, assuming nothing about the form of the distribu-
tion, gives shorter intervals for small n than Method II, which demands a nor-
mal distribution may seem somewhat surprising. The explanation lies in the
fact that, for a given value of a, the actual probability of coverage is higher
for Method II than for Method I. For p = 0 and p = 1, the actual probabilities
of coverage for all four methods are as follows:

- Methods I, III, IV Method II
p=20 p=1 p=20 p=1
6 .939 .969 .989 .994
8 .984 .992 .997 .999
10 .958 .979 .991 .995
20 .976 .988 .994 .997

100 .958 .979 .988 .994
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Throughout the preparation of this paper, it was conjectured that the same
set of intervals developed here might be used for a k-variate distribution. Mr.
Ernest V. Scheuer has, however, recently drawn the author’s attention to the
following counterexample, which shows that it is possible for P(E,E,E;) to be
less than P*(E,), where E; is the event that z;, < »; < Zigtepr,t = 1,2, 3.

Let r = 1, and, for simpligity, let m = »a = »3 = 0.

Let pmi = P(yn > 0,92 > 0,943 > 0), po = P(y1 > 0, %2 > 0, y3 < 0), and
similarly for pio , Pon , D100, Poro , Ponx , a0d Pooo .

It can be readily verified that P(2) < 0 < 21,20 < 0 < 22, 21 < 0 < 23,)
is smaller for pi1 = Pio = Poe = Pon = 1/4, Puo = P11 = Pou = Poo = 0 than
it is under independence (P11 = Puo = -+ = Poo = 1/8).
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