CONSENSUS OF SUBJECTIVE PROBABILITIES: THE
PARI-MUTUEL METHOD

By EpMuNDp EiSENBERG AND DAvID GALE
The Rand Corporation and Brown University

A certain probability space is contemplated by a group of m individuals, each
of whom endows it with his own subjective probability distribution. Suppose,
now, that we wish to form a distribution which represents, in some sense, a con-
sensus of those individual distributions. Various possibilities suggest themselves:
the average, the convolution—but wait. There actually exists a popular institu-
tion which, theoretically at least, does perform just such an aggregation of
personal probabilities. We refer to the pari-mutuel method of betting on horse
races. In this system the final “track’s odds” on a given horse are proportional
to the amount bet on the horse. We shall here investigate the type of consensus
given by this mechanism, which turns out to be quite different from any of the
obvious aggregation schemes that might occur to one.

In formulating the pari-mutuel model we assume the m individuals involved
are bettors, labeled B;, -, Bn, concerned with a race involving n horses,
labeled H , - - - , H, . We assume further that each B; , after careful study of the
form sheets, the condition of the track, and other relevant material, has arrived
at an estimate of the relative merits of each of the H;’s which he expresses in
quantitative terms. Specifically, we are given an m X n subjective probability
mairiz P = (p:;) where p;; is the probability, in the opinion of B;, that H; will
win the race.

Having determined his subjective probability distribution, B; will now bet the
amount b; , a fixed positive number called B.’s budget, in a way which maximizes
his subjective expectation. This means, of course, that B; will not necessarily bet
the whole amount b; on that H; for which p;; is largest. In general, B; will “bet
the odds,” that is, he will wait until the final track odds, or more conveniently,
track probabilities, are announced. If these are 1, * - - , #» , he will examine the
ratios pi;/w; and distribute b; among those H ; for which this ratio is a maximum.
We shall refer to this course of action as B’s strategy.

A technical difficulty is immediately apparent. We have already stated that
the final track probabilities y , - -+ , ms are proportional to the amounts bet on
Hy,---, H,, respectively (this is true whether or not the track retains a per-
centage). Thus, in practice, the = ;s are not known until each B; has made his
bet. On the other hand, B; must know =1, - - - , #, before he can determine his
bet. There is, therefore, a serious question as to whether there exist final track
probabilities and individuals’ bets compatible both with the bettors’ strategies
and the pari-mutuel principle. It is the purpose of this note to show that such
probabilities and bets do exist and that the probabilities are in fact unique,
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thus giving a well-defined notion of consensus. Of course, the “influence” of B;
on the consensus will depend on his budget b; , the case of equal influence being,
by definition, that of equal budgets.

It will be convenient to choose the unit of money so that > r;b; = 1. We
shall also assume that each column of the matrix P contains at least one positive
entry. If this were not so then, say, p;; = 0 for all 7 and none of the B;’s would
bet on H; under any circumstances. We could then eliminate H; from considera-
tion entirely.

We shall now arithmetize the conditions which must be satisfied under the
pari-mutuel system. Let 8;; be the amount which B; bets on H; . These must
satisfy the budget relation.

) 2 Bij = b;.
J=1
Next, the pari-mutuel condition requires that

(2) ’Z; Bij = LE)
which is simply the statement that the final track probability =; is proportional
to the total amount bet on H; . Equality holds here because of the normalization
of the monetary unit. (We are using Greek letters to represent unknowns, Latin
letters for the given constants of the problem.)

Finally, we must express the fact that each B; is maximizing his expectation.
The reader will easily verify that the condition is the following:

3) if u; = max Pit ond B:; > 0, then u; = ?-ij,

s Ts LE)
which states that B; bets only on those H ;s for which his expectation is a maxi-
mum.

Nonnegative numbers =; and 8;; which satisfy (1), (2) and (3) are called
equilibrium probabilities and bets. Their existence can be proved by means of
fixed-point theorems. We prefer, however, to prove existence in an elementary
manner using a variational method which seems to be of interest in itself. We
define a function ¢ and show that the variables which maximize it correspond to
a solution of (1), (2) and (3).

The function ¢ has mn arguments £,; and is defined by the rule:

¢(Ell, M ’Emn) = Z-:lbt lOng-;piiE‘f)

the variables £;; being restricted to the domain D defined by:
(4) Eij = 0, for all 1:, j,

(5) Z; &i=1, for all j.
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We shall come back and discuss the meaning of the function ¢ after we have
shown its relation to the pari-mutuel problem.

If we include minus infinity in the range of ¢, then ¢ is continuous on the
compact set D, hence attains a maximum at some point (£u, *-- , &ma) of D.
At this maximum the term _j; pi;&:; is positive for every 7 (otherwise ¢ would
be minus infinity, which is clearly not its maximum value). The partial deriva-
tives of ¢ at the maximum are given by

9 _ bipi;

Ei  ePikie
We now assert:
ExisTeNcE THeOREM. A set of equilibrium probabilities =; and bets B;; are
given by

¢ b: pij
(6) T; = MaX — = mMax e—=———
! i afii i Zc Pis Ei:
) Bij = Eijmj.

ProoF. We must show that the numbers =;, 8:; satisfy (1), (2) and (3). The
pari-mutuel condition (2) follows at once upon summing (7) on ¢ and using
condition (5) on the £;;.

The verification of (1) and (3) depends on the fact that

8) if £&; > 0, then 7; = %‘l .

1)
To see this, suppose (8) is false and for some %, j we have %; > 0 and
w; > 0¢/dE:; . By definition of x; we have =; = d¢/0%; > d¢/d%:; for some
index k. Which means that by slightly decreasing £;; and increasing Z:; by the
same amount (which would not violate (4) or (5)), we could increase the value
of ¢, which is impossible since we are already at a maximum. Thus (8) is estab-
lished.
We next verify condition (1). From (7) and (8) we have

- = bi pij
ﬁi.=£i~1r-=£i-—:—.
! 7 ! Za Dis Ei:
Summing the above on j,

S piy = by Pk g
i Zc Die £
Finally, we must prove (3). Since we assumed that none of the columns of the
matrix P is identically zero, we know that each =; is positive. Thus from (6) we
have
Pii E. Die zu
©) i g L bube

LE}
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and u;, as defined in (3), is (1/b;) D_, piskir . We see, then, from (7) and (8)
that if 8;; is positive, £;; is positive and hence u; = p;;/7;, thus showing that
(3) holds. (The fact that the 7;’s sum to 1 is, of course, a consequence of (1) and
(2) and the normalization of the by’s.) Q.E.D.

The function ¢ can be interpreted as follows. From (7) we have _; pi;i; =
i Bij(pii/;), which is exactly the subjective expectation of B; when he bets
Bi; on H; with track probabilities m; , - - - , 7, . Thus, at equilibrium the bettors,
as a group, maximize a weighted sum of logarithms of subjective expectations,
the weights being the bettors’ budgets. As noted previously, equilibrium prob-
abilities turn out to be unique, although equilibrium bets need not be unique.
Furthermore, not every collection of B;;’s, obtained by having each B; act
according to his strategy at equilibrium probabilities, need be equilibrium bets.

As a final result we show

UniqueNEss THEOREM. Equilibrium probabilities are unique.

Proor. Let m, -+ ,m, and 7, -+ , ¥, be equilibrium probabilities, let 8;;,
8:; be corresponding bets, and u; , @ as defined in (3). Then for all 7, j, k we have:

Bijuim; = BifPi; = Biifli®;

Budimr = Bupu < Bupims
whence, since u;, @;, m;j, 7 are positive, ﬂ;jﬁ,‘k(‘l?k/‘lrk) = Bijsiki'j/ﬂ'j. Sum-
ming on j, k we get: b; D Bu(ir/m) < biY; Bijei/7;j; dividing by b; and
summing on ¢: Y (Fite/me) < D75 = 1.

Let zx = # /A7, Y« = V7. From the Cauchy-Schwartz inequality we
have:

Caw' = (Cn' =135 CHED = (Z22) En) 51

Tk

Thus the vectors (x1, -+, Zn), (41, -+ , yn) are dependent and #x = um: . But
> % = 2, m = 1, hence u = 1 and m = 7, proving uniqueness.

The referee has suggested the following instructive example which indicates
the somewhat ‘“pathological” nature of the pari-mutuel consensus. In the case
of two bettors with equal budgets if the first bettor’s subjective probability
distribution on two horses is (3, 1), then the equilibrium probabilities will be
(3, %) regardless of the subjective probabilities of the second bettor, as the reader
will easily verify.



