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Summary. If a variable X has density function f(z, 6), then in many cases the
Cramér-Rao bound or the Bhattacharyya bounds may be used to show that a
function d(z) is a uniformly minimum variance unbiased estimate of the real
parameter 6.

In this paper it is shown that if f(z, 6) is a member of the family of densities
of the Darmois-Koopman form, and if the variance of d(z) achieves the kth
Bhattacharyya bound, but not the (k¥ — 1)th bound, then f(z, 8) =
exp[t(z)g(8) + go(6) + h(x)] and d(x) is a polynomial in #(z) of degree k.
Further, the variance of any polynomial in ¢(x) of degree k will achieve the kth
bound, so that if any such unbiased polynomial exists, it will necessarily be
uniformly minimum variance unbiased. Some properties of these polynomial
estimates are discussed.

Introduction. We will consider a one parameter family of density functions
Sz, 8), 0 ¢ 2, such that

P{XecA} = Lf(x,o) du(z).

The variable X is possibly vector valued, as in the case where a random sample
is observed, the set @ is any set of real nurhbers, and p is a measure
independent of 6.

Conditions under whieh a Bhattacharyya bound is a valid lower bound for the
variance of an estimate d(x) have been discussed in [1], [2], [4], and [5]. The
conditions given by Wolfowitz [5] are for the sequential estimation problem. For
the nonsequential case these can be written as
(1) (a) Qis the entire real line, or an open interval of the real line.

(b) d{xr) has finite variance.

(¢) Both [f(z, 8) du(z) and [d(z)f(x, 8) du(x) are differentiable under
the integral sign with respect to 8. Specifically, if ¢; = [1/f(z, §)]
[0%(z, 6)/36°], then, for almost all z, ¢, existsforall 0 £ Q,¢ = 1, - -+ k.
The exceptional sets of z’s do not depend on 8. Denote E[d(X )¢
by A, . ,

(d) The covariance matrix of ¢; exists and is non-singular for 6 ¢ Q.

Then, if (1) is satisfied,

-
@) e E 7 1 Bgid |

) /
A Edi ¢y -+ Eg |/

Received March 31, 1958; revised January 23, 1959.
381

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics. MIKOIRS ®

5 ()

v

o 22

WWw.jstor.org



382 A. V. FEND

The right member of (2) is the kth Bhattacharyya bound. The Cramér-Rao
bound is obtained by setting k =

We will assume that the regularity conditions in (1) are satisfied, for some k,
for all of the density functions considered here. However, it is worth noting that
in many special cases (c¢) of (1) will follow from the fact that a Laplace transform
may be differentiated under the integral sign, or, in other cases, from the fact
that term by term differentiation is permitted whenever Ed(X) is a finite sum,
as in the binomial distribution.

Results. Cramér [2] proved that if the equality in (2) holds for the case k = 1,
then d(z) must be a linear function of ¢; . Girshick and Savage [3] defined an
exponential family of density functions and showed, under certain restrictions,
the existence of a function whose variance achieves the Cramér-Rao bound
The same exponential family is considered in the following theorem.

TueEOREM 1. If the conditions in (1) are satisfied for f(x, 0) awd d(x), and if
a3 > 0 for all 0, then a necessary and sufficient condition that o5 achieve the Cramér-
Rao bound is that f(z, 6) = exp[d(:c)g(o) + go(8) + h(x)], where g'(6) = 0.

If the maximum likelihood estimate 8 is given by the root of the equation (6/ 99)
In f(x, 0) = 0, and +f d(:c) s an unbiased estimate of 0, then, in addition, go(o)
—0g (8) and d(z) = .

Proor. We can, Without loss of generality, write the density function of X in
the form f(z, 8) = exp[u(z, 6)]. Now, if the variance of d(x) achieves the Cramér-
Rao lower bound, (2) becomes an equality, and this is a statement to the effect
that the correlation coefficient of d(x) and ¢, is unity. That is, d(x) is a linear
function of ¢, , except perhaps on a set of u measure zero, and we can write

(3) d(z) = ao(6) + a1(0)¢r
where
_ ou(z,0) _
b1 = 3w Y (z,0) .

Since o3 > 0, it follows that d(z) is not a constant, so that a,(8) 0. Therefore,
we can solve (3) for u'(z, 0) getting
W(z, 6) = d(z)ar' (0) — ac(6)ai’(6)

and u(z, 0) = d(x)g(6) + go(6) + h(z).
To check sufficiency, we note that if f(x, ) = exp[d(x)g(8) + go(8) + h(z)]
then ¢, = d(z)g’(8) + go(6) and ¢, is the linear function of d(z) given by (3)-
That is, the correlation coefficient of d(x) and ¢ is unity, and so the variance of
d(z) achieves the Cramér-Rao bound.

Now, observing that E¢; = 0, we get, from (3), Ed(X) = ai(0) + ai(6)E¢,
= ao(0). If d(x) is an unbiased estimate of 8, then ao(8) = 6 and, substituting
these values in (3),

4) d(z) = 8 + ai()[d(z)g'(8) + go(6)].
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Since d(z) does not contain 6, it follows that a;(8) = [¢'(8)]”" and
g0(8) = —6g'(0). To complete the proof of the theorem, we must consider the
maximum likelihood estimate, 6. The coefficient of a;(6) in (4) is just the log
of the likelihood function. Therefore, d(x)g’(8) + go(8) = 0. But since the right
member of (4) does not contain 8, we can substitute # for 8 in (4) and obtain
d(z) = 6. This completes the proof of the theorem.

Theorem 1 raises two important questions. First, we showed that if the vari-
ance of d(x) achieves the Cramér-Rao bound, then the density function
is given by

(5) f(z, 8) = exp [d(x)g(6) + go(8) + h(x)].

For such a function, we might now investigate the possibility that the variance
of some function of d(z) might achieve one of the Bhattacharyya bounds, even
though it does not achieve the Cramér-Rao bound. It also seems possible that
if the exponent in (5) can be expressed as a polynomial in d(z), with coefficients
depending only on 6, then some function of d(x) might achieve one of the higher
bounds. This point is covered by Theorem 2.

A second question is concerned with maximum likelihood estimates.
In Theorem 1 we showed that if the variance of an unbiased estimate d(x)
achieves the Cramér-Rao bound, then d(z) is both minimum variance unbiased
and maximum likelihood, and we might now ask if this result holds for the
Bhattacharyya bounds. The answer is that it does not.

To illustrate this, suppose that the variance of the unbiased estimate d(z)
achieves the second Bhattacharyya bound, but not the Cramér-Rao bound. In
this case, (2) becomes an equality, and the multiple correlation coefficient of
d(x) and ¢; and ¢ is unity. That is, we can write

(6) d(z) = ai(6) + a1(8)¢1 + a:(6)¢2 .

Now for any k, E¢r = 0, so that in taking expected values of both sides of
(6), we get Ed(X) = ao(6). If d(x) is unbiased, ao(8) = 6. Substituting the
maximum likelihood estimate 8 for 6, as in the proof of Theorem 1, (6) becomes
d(z) = 6 + a2(8)¢2(8). In general, the term a»(6)¢2(8) will not vanish. That is,
if 6 maximizes the likelihood function, then 6 will not be a solution of
19

Fom = O

¢2 =
Hence, we would expect that the minimum variance unbiased estimate would
not be the same as the maximum likelihood estimate.

If d(z) is a sufficient statistic, then the maximum likelihood estimate is neces-
sarily a function of d(z), and the same thing may be said of any estimate whose
variance achieves the kth Bhattacharyya bound. For such an estimate d,(x),
(2) becomes an equality, and we write di(z) = ao(8) + D_a:(8)é;. The state-
ment that di(x) is a function of d(a) will be proved if we show that ¢; depends
only on d(x) and 6.
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Suppose that the density in question satisfies Neyman’s criterion for suffi-
ciency. That is, f(z, 8) = hld(z), 68]lg(z). Then

_1df 1gdh _13h

$T o " hgow  hoe’

and ¢, is a function of the sufficient statistic d(z).
TuarEOREM 2. Consider a density function of the form

f(z,0) = eXP{ go (u(2)]**g:(6) + v(x)}

where the real numbers a; , 1 = 0 - -+ n satisfy the conditions 0 = ap < oy < - -+
< an, and g, (8) # 0. If the reqularity conditions in (1) are satisfied for an estimate
of 6, d(z), and the density f(z, 0), if o5 > 0 and o5 achieves the kth Bhattacharyya
bound but not the (k — 1)th bound, then the density may be expressed in the form
f(z, 0) = explt(z)g(0) + g(0) + h(zx)] and d(z) s a polynomial in t(x) of
degree k. Further, the variance of any polynomzal in t(x) of degree k will achieve
the kth bound. .
Proor. In order to simplify notation, we define a general function

Pylu(@)] = [w(@)'W.(0) + 22571 [u(=) " W(0),

where the real numbers b; and b satisfy the conditions 0 = b; = b, ¢ =1 ---
(r — 1). In the expression Py[u(z)], we will not be concerned with the particular
values of r, or W,(8),7 =1 - -- r. In fact, we do not exclude the possibility that
w.(6) = 0.

Notice that if the numbers b; and b, ¢ = 1 --+ (r — 1) are integers, and if
W.(8) 5~ 0, then Ps[u(x)] is just a polynomial in u(z) of degree b, with coeffi-
cients depending on 6.

Now, for the density function f(z, 8) = exp{ D im0 [u(2)]*g:(0) + v(x)}, we
will show that

n h
(7) én = { ;0 [u(x)]“‘g:'((i)} + Poyin -1 [u(z)].
For any integer value of h, A = 1,
3 [1 a""f] _ [1 af] [1 a""f] 41 o'f
a0 f a1 foollfae—1]" f a6

and, using the definition of ¢; in (1), we get the recursion relation ¢, = én1 +
G1Pp-1 - NOW,

b= &1 + b1 = { 2:"6 [u(x)]""gi-(fi)} + Z:; [u(z)]g} (6)

so that ¢ is of the form given in (7).
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Suppose next that ¢, is also given by (7). Then, using (7) and the recursion
relation,

= (h—1) { 3 @y, (o)} { > [u(x)]“fg;’w)} + 2 Prypealu(a)]
+ { 3= fu()1g}(0) }{(g [u(x)]“fg:-w)) T4 Pan(h-2)[u($)]}

{ Z [u(x)]*g:(6) } + Poyo-plu(z)].

That is, ¢x is given by (7), and so (7) holds for all positive integral values of A.

If d(z) is an estimate such that o5 > 0 and o3 achieves the kth Bhattacharyya
bound but not the (k¥ — 1)th bound, then, by the same reasoning that led to
(4), we can write

(8) d(z) = ao(8) + 2 i1 ai(0)é:,

where a:(0) #= 0.
Now, substituting (7) into (8) we get

) d@) = w®) + 3 al) {(g [u(x)]“fg;-w))' + Pa,,(,‘,l)[uu)]} .

Notice that the right side of (9) can be expressed as a sum of terms, each term
being a power of w(x) multiplied by a coefficient which does not depend on z.
But d(z) itself is free of 6, so that the functions a;(6) must be chosen so that
the coefficients in this series are free of 6.

Suppose now that (9) is expressed in descending powers of u(x). We will pay
special attention to the expression

(10) a4(0) { > [u(x)]""gﬁ-(o)}

because this contains the higher powers of u(x), and hence the first terms of the
expansion in descending powers of u(z).

Recalling that 0 = ag < oy < -+ < an, we observe that the first term in the
expansion is

ax(8)[u() ) [gn (8)]".

kay,

Sincge the coefficient of [u(x)] " is independent of 6, it follows that a:(8) =
C.lg.(6)]7*, where C, is a constant. Substitute this value of ax(8) into (10),
and (10) becomes '

< a,~g§(0)}"
(11) Cn{;[u(xn RO

The next term in the expansion of (9) in descending powers of u(x), whose
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coefficient might depend on 6, is obtained from (11). It is

gn—l(o) an(k—Dtan_ s
Ca O [u(2)]

Again, the coefficient must be independent of 6, so that gn_s(8) = Cn_1gn(6),
where C,_; is a constant.
Substituting this value in (11), we get

(12) {[u(x) 4 [u(@)]*Coy + [u(z)]™-2 g""?ig) + } .

We see that the next term in the expansion whose coefﬁ(nent might depend
on 0 is

{Constant + C. g“—z(g)} [u ()]t ran=e

and this implies that g:._g(O) = C,,_gg,.(t?) where C,_; is a constant.
Repeating this procedure on the remaining functions, it follows that

(13) gi(0) = Cign(8), j=1,---,n—L
But¢; = 2 1 [u(x)]“ig;-(o), and substituting (13) in this expression,

- Z;: [(2)1%g.(6)C; + [u(z)]g(6) + gu6)

(14) S
= ¢.(0) ng [u(x)]¥C; + [u(x)]“"} + g0(6).
In (14), let t(z) = D ;=% [u(x)]“’C’ + [u(z)]* and ¢.(6) = ¢'(0), and we can

say that ¢; = t(x)g’(0) + go(()) Since ¢; is the derivative of the exponent of
the density function stated in the theorem, we get

f(z, 8) = exp [t(x)g(6) + go(6) + h(zx)]

and this concludes the proof of the first part of the theorem.

If f(z, 0) is of the above form, then (7) becomes ¢5 = [t(x)g’(8) + go(l?)] +
P,i[t(z)], where Pj_4[t(x)] is a polynomial in {(x) of degree h — 1 with co-
efficients depending only on 6.

Using this result and (8),

(15)  d(z) = ao(8) + 2_: a:i(0){[t(2)g’(8) + go(0)]' + Pusslt(z)]}

so that d(x) is a polynomial in ¢(z) of degree k.

Finally, we will show that if d(z) is any polynomial in ¢(z) of degree k, then
the functions @;(8),¢ = 1, - -+, k can be chosen so that (15) holds. To do this,
let Pi4[t(x)] = Z:—o £(x)u;(6). As stated before, we will not be concerned
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with the particular form of u;;(6). Substituting this expression in (15) we get

i—1 \

ao(0) + ; ai() {[tg' + gl + ,;o t”u.-j}

au(®) + 2 as(0) {}: (;) )G~ + & t"u,,}‘

a®) + 3 ai0) { (zg')‘ + 2 ¢ [(;) (@) (g0 + u]}
ltg')ar(6) + ---
+r {a,..(t?)(g')" + 2 a® [ (5) 02w+ u]} 4.

=m0

d(x)

(16)

+ ao(9) + ;_1 [(g:))i + uilai(6).

Choose arbitrary constants, Co, Cy, - - - Ci, and let ax(8) = Cilg’ (6)*. For

0<n<klet
k

e~ 2 o [ (1) @0 +

_ i=n+
a(0) = @)

and .
a(8) = Co = 2 [(g0)* + uwla(6).

Using these functions in (15) we get d(z) = i~ Cit'(z). Since the constants
Co, -+, Ci are completely arbitrary, it follows that any polynomial in ¢(z) of
degree k can be written in the form (15). This completes the proof of the last
part of Theorem 2.

Theorem 2 provides a method for finding uniformly minimum variance un-
biased estimates. That is, if f(x, 8) is of the form described in Theorem 2, then
we look for an unbiased polynomial in ¢(z). If this polynomial is of degree k,
then its variance achieves the kth Bhattacharyya bound and it is the best un-
biased estimate.

On the gther hand, we know that if the variance of d(z) achieves the kth
bound, then d(z) is necessarily a polynomial in ¢{(z). Therefore, if we find that
no such polynomial is unbiased, there would seem to be no value in calculating
any of the Bhattacharyya bounds if we are interested only in minimum variance
unbiased estimates. The following examples illustrate uses of Theorems 1 and 2.

ExampLE 1. Let X have density 6™ exp [— 267"™], 0 < z, 0 < 6 where
n is a positive integer, and suppose that an estimate is wanted for 8. We write
the density as exp [—z6~ "™ — (1/n) log 6], and, in the notation of Theorem 2,
(z) = z, g(8) = -6 and g(6) = —(1/n)leg6. If n = 1, then
go(8) = —0g’(8), so that from Theorem 1, the estimate X is minimum variance
unbiased.
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If » > 1, the estimate z"/n! is an unbiased estimate of 6, and, since it is a
polynomial in z of degree =, it follows from Theorem 2 that the variance will
achieve the nth Bhattacharyya bound. Hence, it is minimum variance unbiased.

By straightforward calculations we find that the maximum likelihood estimate
is § = z". If n = 1, 0 is unbiased, as stated in Theorem 1, but if n > 1, then
6 is a biased estimate.

ExampLE 2. Let X have density § "exp [—z6 "], 0 < z, 0 < 6, where n is
an integer, n > 1, and an estimate is wanted for 6. Writing the density as in
Theorem: 2, exp [—x6 " — n log 6]. Now from Theorem 2, if the variance of an
estimate d(z) achieves the kth bound, d(z) is a polynomial in z. But for this
density we have, for any integer ¢, EX° = ¢!0"°. Therefore, no polynomial in z
is an unbiased estimate of 8. This does not imply that no minimum variance
unbiased estimate exists, but it does mean that the variance of any unbiased
estimate will not achieve the kth bound.
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