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THE LIMITING DISTRIBUTION OF THE SERIAL CORRELATION
COEFFICIENT IN THE EXPLOSIVE CASE II

By Joun S. WHITE
Aero Division, Minneapolvs Honeywell Regulator Company
Introduction and summary.! A standard linear regression model is

(1) Ty = oy + U (t=1,23,---T)
where « is an unknown parameter, the y’s are known parameters and the u’s are
NID (0, %).
The maximum likelihood estimators for a and ¢ are
(2) 4 = Z Tt Ys E (xt - &yt)z
2y
The statistic

®) G N )

then has a ¢ distribution with 7' — 1 d.f. and its limiting distribution is N (0, 1).
One approach to time-series analysis is to set ¥ = %:—1, y1 = %o = a constant.
The model (1) is then transformed into the stochastic difference equation.

(4) Ty = afsq + Us. (t=1,2---,T)
The maximum likelihood estimators for a and ¢ in (4) are -

E xtxg_l 2 _ E (xt - &xt—l)2
(5) Z xt_l ¢ = T

which are exactly the values one would obtain by substituting y. = ., in (2).
In this paper it is shown that the limiting distribution of

(®) w129 (ma

which is the analogue of (3), has a limiting N'(0, 1) distribution, except perhaps
when || = 1. This result is well-known for |a| < 1 and was proved by Mann
and Wald [1] under much more general conditions. The feature of the proof pre-
sented here is that it also holds in the explosive case (| a| > 1).

The limiting distribution. We define the quadratic forms
R = 3}2 Cazm —aTals), §= 522k
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where

T 3
g=g(T,a)=< 2) for |a| <1,

1 — o

||
= ——— for |a|> 1

o2 —1

It has been shown [2] that the limit of the joint characteristic function of R
and S is

Il

n
o(u,v) = exp (iv - %) for |a| < 1,

2 2 . 2
xo((x —1)(221)—?,&) / 2 o:0\}
exp{ 50 T o = 2) 1+ v — 2w) for |a| > 1.

Let r and s be random variables with joint characteristic function ¢(u, v).
Then the limiting distribution of

- (B2) - 75

is the same as the distribution of 7/4/ . To obtain the distribution of r/+/s we
must invert ¢(u, v).
For |a| < 1 we see from the form of ¢(w, v) that r is N(0, 1) and

Prob (s = 1) = 1. Therefore r/+/ is also N(0, 1).
For | | > 1, the joint distribution of » and s is not obvious. However, if we set

It

p = %x?’(az - 1)’
we may expand ¢(u, v) as

(u,0) = 67 2 @/TG + 1)1 + o — 2i0)™),

Inverting ¢(u, v) first with respect to v we have

1 s exp (=l + 71/2)p
o [ o) do = e & WG T OTGF D

0

Inverting next with respect to « we have

1 ® —iur 1 m —iv8 /
F(r,s) —é;fwe <§;[_me ¢(u,v)dv>du,

e (= e ()
BRIV, ( 2s 5) ZTGFOIGTD

To obtain the distribution of r/4/swe make the change of variable w = r/4/s
in f(r, s) and then integrate out s. We have
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_ 3 _30_2_5 > (ps/2)’
f(w, s) exP( P—3 2) ;i;o2\/1r_sr(j +HrG+1)°

—w?2/2 00 7

_ A S
s = [ s = o S,

_n

Ve

Thus 7/4/s is again N(0, 1).
To obtain the limiting distribution of W we note that

Z (zy — axt—l)z — Z uf Y4 o
T T i

)

by the law of large numbers, and therefore

a 2 _ 2 P 2
&= Z(xt ;1 6241) - Z(xt - o) _ (a Ta) sz;_l p o
Hence, the limiting distribution of

(& — a)(‘zx%—l)% -Ww
&

is the same as that of

(& — cx)(z:a'if—l)i _ R
o VS’

and hence W is N(0, 1).

Applications. For large samples W approximately N (0, 1) and hence may be
used to construct confidence intervals for «. For example, a symmetric 95%
confidence interval for a would be

SEa=2a+ 196 =5

(th_l)* - (Ext_l)*

The likelihood ratio criterion for testing the hypothesis H : @ = a against the
alternative hypothesis H : & # ay is

R et

& — 196 =

and asymptotically

—W2/2
e /

R

~ W2 T/2

—2log\ = W2
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Hence, the limiting distribution of —2 Jeg A is a chi-squared distribution with
1df. ‘
For testing this hypothesis a large sample critical region which might be used is

|w l > Zip/2

where p is the level of significance and 2,2 is the 100 (1 — p/2) percentile
point of the normal distribution.
It should be noted that the above results probably do not hold for |a| = 1
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