THE LIMITING DISTRIBUTION OF THE SERIAL CORRELATION COEFFICIENT IN THE EXPLOSIVE CASE II

By John S. White

Aero Division, Minneapolis Honeywell Regulator Company

Introduction and summary. A standard linear regression model is

$$(1) x_t = \alpha y_t + u_t (t = 1, 2, 3, \cdots T)$$

where α is an unknown parameter, the y's are known parameters and the u's are NID $(0, \sigma^2)$.

The maximum likelihood estimators for α and σ^2 are

(2)
$$\hat{\alpha} = \frac{\sum x_t y_t}{\sum y_t^2}, \qquad \hat{\sigma}^2 = \frac{\sum (x_t - \hat{\alpha}y_t)^2}{T}.$$

The statistic

(3)
$$\frac{(\hat{\alpha} - \alpha)}{\hat{\sigma}} \left(\sum y_t^2 \right)^{\frac{1}{2}} \left(\frac{T - 1}{T} \right)^{\frac{1}{2}}$$

then has a t distribution with T-1 d.f. and its limiting distribution is N(0, 1). One approach to time-series analysis is to set $y_t = x_{t-1}$, $y_1 = x_0 =$ a constant. The model (1) is then transformed into the stochastic difference equation.

$$(4) x_t = \alpha x_{t-1} + u_t. (t = 1, 2, \dots, T)$$

The maximum likelihood estimators for α and σ^2 in (4) are

(5)
$$\hat{\alpha} = \frac{\sum x_t x_{t-1}}{\sum x_{t-1}^2}, \quad \hat{\sigma}^2 = \frac{\sum (x_t - \hat{\alpha} x_{t-1})^2}{T}$$

which are exactly the values one would obtain by substituting $y_t = x_{t-1}$ in (2). In this paper it is shown that the limiting distribution of

(6)
$$W = \frac{(\hat{\alpha} - \alpha)}{\hat{\sigma}} \left(\sum x_{t-1}^2 \right)^{\frac{1}{2}},$$

which is the analogue of (3), has a limiting N(0, 1) distribution, except perhaps when $|\alpha| = 1$. This result is well-known for $|\alpha| < 1$ and was proved by Mann and Wald [1] under much more general conditions. The feature of the proof presented here is that it also holds in the explosive case $(|\alpha| > 1)$.

The limiting distribution. We define the quadratic forms

$$R = \frac{1}{g\sigma^2} \left(\sum x_t x_{t-1} - \alpha \sum x_{t-1}^2 \right), ~~ S = \frac{1}{g^2\sigma^2} \sum x_{t-1}^2$$

Received August 5, 1957; revised March 1, 1959.

¹ The author wishes to acknowledge several comments of the referee which simplified the presentation of these results.

where

$$g = g(T, \alpha) = \left(\frac{T}{1 - \alpha^2}\right)^{\frac{1}{2}} \text{ for } |\alpha| < 1,$$

$$= \frac{|\alpha|^T}{\alpha^2 - 1} \text{ for } |\alpha| > 1.$$

It has been shown [2] that the limit of the joint characteristic function of R and S is

$$\phi(u,v) = \exp\left(iv - \frac{u^2}{2}\right) \qquad \text{for } |\alpha| < 1,$$

$$= \exp\left\{\frac{x_0^2(\alpha^2 - 1)(2iv - u^2)}{2(1 + u^2 - 2iv)}\right\} / (1 + u^2 - 2iv)^{\frac{1}{2}} \qquad \text{for } |\alpha| > 1.$$

Let r and s be random variables with joint characteristic function $\phi(u, v)$. Then the limiting distribution of

$$(\hat{\alpha} - \alpha) \left(\frac{\sum x_{t-1}^2}{\sigma} \right)^{\frac{1}{2}} = \frac{R}{\sqrt{S}}$$

is the same as the distribution of $r/\sqrt{\ }$. To obtain the distribution of r/\sqrt{s} we must invert $\phi(u, v)$.

For $|\alpha| < 1$ we see from the form of $\phi(u, v)$ that r is N(0, 1) and Prob (s = 1) = 1. Therefore $r/\sqrt{}$ is also N(0, 1).

For $|\alpha| > 1$, the joint distribution of r and s is not obvious. However, if we set

$$p = \frac{1}{2}x_0^2(\alpha^2 - 1),$$

we may expand $\phi(u, v)$ as

$$\phi(u,v) = e^{-p} \sum_{i=0}^{\infty} (p^{i}/\Gamma(j+1)(1+u^{2}-2iv)^{j+\frac{1}{2}}).$$

Inverting $\phi(u, v)$ first with respect to v we have

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ivs} \phi(u,v) \ dv = e^{-p} \sum_{j=0}^{\infty} \frac{s^{j-\frac{1}{2}} \exp\left(-s[1+u^2]/2\right)p^j}{2^{j+\frac{1}{2}}\Gamma(j+\frac{1}{2})\Gamma(j+1)}.$$

Inverting next with respect to u we have

$$f(r,s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iur} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ivs} \phi(u,v) \, dv \right) du,$$

$$= \frac{e^{-p}}{2\sqrt{\pi s}} \exp\left(\frac{-r^2}{2s} - \frac{s}{2} \right) \sum_{j=0}^{\infty} \frac{(ps/2)^j}{\Gamma(j+\frac{1}{2})\Gamma(j+1)}.$$

To obtain the distribution of r/\sqrt{s} we make the change of variable $w = r/\sqrt{s}$ in f(r, s) and then integrate out s. We have

$$f(w,s) = \exp\left(-p - \frac{w^2}{2} - \frac{s}{2}\right) \sum_{j=0}^{\infty} \frac{(ps/2)^j}{2\sqrt{\pi s}\Gamma(j+\frac{1}{2})\Gamma(j+1)},$$

$$f(w) = \int_0^{\infty} f(w,s) ds = \frac{e^{-w^2/2}}{\sqrt{2\pi}} e^{-p} \sum_{j=0}^{\infty} \frac{p^j}{\Gamma(j+1)},$$

$$= \frac{e^{-w^2/2}}{\sqrt{2\pi}}.$$

Thus r/\sqrt{s} is again N(0, 1).

To obtain the limiting distribution of W we note that

$$\frac{\sum (x_t - \alpha x_{t-1})^2}{T} = \frac{\sum u_t^2}{T} \xrightarrow{p} \sigma^2,$$

by the law of large numbers, and therefore

$$\hat{\sigma}^2 = \frac{\sum (x_t - \hat{\alpha} x_{t-1})^2}{T} = \frac{\sum (x_t - \alpha x_{t-1})^2}{T} - \frac{(\hat{\alpha} - \alpha)^2}{T} \sum x_{t-1}^2 \xrightarrow{p} \sigma^2.$$

Hence, the limiting distribution of

$$\frac{(\hat{\alpha} - \alpha)(\sum x_{t-1}^2)^{\frac{1}{2}}}{\hat{\sigma}} = W$$

is the same as that of

$$\frac{(\hat{\alpha} - \alpha)(\sum_{\sigma} x_{t-1}^2)^{\frac{1}{2}}}{\sigma} = \frac{R}{\sqrt{S}},$$

and hence W is N(0, 1).

Applications. For large samples W approximately N (0, 1) and hence may be used to construct confidence intervals for α . For example, a symmetric 95% confidence interval for α would be

$$\hat{\alpha} - 1.96 \frac{\hat{\sigma}}{(\sum x_{t-1}^2)^{\frac{1}{2}}} \le \alpha \le \hat{\alpha} + 1.96 \frac{\hat{\sigma}}{(\sum x_{t-1}^2)^{\frac{1}{2}}}$$

The likelihood ratio criterion for testing the hypothesis $H: \alpha = \alpha_0$ against the alternative hypothesis $\bar{H}: \alpha \neq \alpha_0$ is

$$\lambda = \left[1 - \frac{(\hat{\alpha} - \alpha_0)^2 \sum_{t=1}^{2} x_{t-1}^2}{\sum_{t=1}^{2} (x_t - \alpha_0 x_{t-1})^2}\right]^{T/2}$$

and asymptotically

$$\lambda \cong \left(1 - \frac{W^2}{T}\right)^{T/2} \cong e^{-W^2/2}$$
$$-2 \log \lambda \cong W^2.$$

Hence, the limiting distribution of $-2 \log \lambda$ is a chi-squared distribution with 1 d.f.

For testing this hypothesis a large sample critical region which might be used is

$$|W| > z_{1-p/2}$$

where p is the level of significance and $z_{1-p/2}$ is the 100 (1 - p/2) percentile point of the normal distribution.

It should be noted that the above results probably do not hold for $|\alpha| = 1$

REFERENCES

- [1] H. B. Mann and A. Wald, "On the statistical treatment of linear stochastic difference equations," *Econometrica*, Vol. 11 (1943), pp. 173-200.
- [2] J. S. White, "The limiting distribution of the serial correlation coefficient in the explosive case I," Ann. Math. Stat., Vol. 29 (1958), pp. 1188-1197.