SEQUENTIAL DESIGN OF EXPERIMENTS

By HErmMAN CHERNOFF!

Stanford University

1. Introduction. Considerable scientific research is characterized as follows.
The scientist is interested in studying a phenomenon. At first he is quite ig-
norant and his initial experiments are preliminary and tentative. As he gathers
relevant data, he becomes more definite in his impression of the underlying
theory. This more definite impression is used to construct more informative
experiments. Finally after a certain point he is satisfied that his evidence is
sufficient to allow him to announce certain conclusions and he does so.

While this sequential searching for relevant and informative experiments is
common, very little statistical theory has been directed in this direction. The
general problem may reasonably be called that of sequential design of experi-
ments. A truncated variation of this problem called the two-armed bandit
problem has attracted some attention (see [1] and [5]). Up to now an optimal
solution for the two-armed bandit problem has not been attained. The failure
to solve the two-armed bandit problem and certain obvious associated results
indicate strongly that while optimal strategies are difficult to characterize,
asymptotically optimal results should be easily available. Here the term asymp-
totic refers to large samples. For the sequential design problems, large samples
and small cost of experimentation are roughly equivalent.

In this paper we present a procedure for the sequential design of experiments
where the problem is one of testing a hypothesis. Formally, we assume that there
are two possible actions (terminal decisions) and a class of available experiments.
After each observation, the statistician decides on whether to continue experi-
mentation or not. If he decides to continue, he must select one of the available
experiments. If he decides to stop he must select one of the two terminal actions.

For the special case where there are only a finite numer of states of nature and
a finite number of available experiments this procedure will be shown to be
“asymptotically optimal” as the cost of sampling approaches zero. The proce-
dure can be partially described by saying that at each stage the experimenter
acts as though he is almost convinced that 4, the current maximum likelihood
estimate of the state of nature, is actually equal to or very close to the true state
of nature.

In problems were the cost of sampling is not small, this procedure may leave
something to be desired. More specifically, until enough data are accumulated,
the procedure may suggest very poor experiments because it does not sufficiently
distinguish between the cases where 8 is a poor estimate and where 8 is a good
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estimate. For small cost of experimentation initial bungling is relatively unim-
portant. It is hoped and expected that with minor modifications the asymptoti-
cally optimal procedure studied here can be adapted to problems with relatively
large cost of experimentation.

The procedures studied make extensive use of the Kullback-Leibler informa-
tion numbers (see [2] and [4]).

2. Preliminaries involving two simple hypotheses. The procedure presented
in this paper may be motivated by an asymptotic study of the classical problem
of sequentially testing a simple hypothesis vs. a simple alternative with only
one available experiment. Suppose Ho:0 = 6, and Hy:0 = 6, are two simple
hypotheses, and the experiment yields a random variable  whose density is
fi(z) under H;, ¢ = 0, 1. The Bayes strategies are the Wald sequential likeli-
hood-ratio tests. These are characterized by two numbers A and B and consist
of reacting to the first n observations z;, 2, * -+, Z»

by rejecting H, if S, = A4,

accepting H, if S, = B,

and continuing sampling as long as B < S, < A where
(2.1) Su = 2. 10g (@) /@)

The appropriate numbers A and B are determined by the a prior: probability
w of H,, and the costs. These are the cost ¢ per observation (which is assumed
fixed ), the loss r, due to rejecting Ho when it is true and the loss r; due to accept-
ing H, when it is false. The risks corresponding to a sequential strategy are
given by

Ry = ro + c&(N | Hy)
(2.2)

R, = rf + c&(N | Hy)

where « and (8 are the two probabilities of error, and N is the possibly random
sample size. Of course A and B are determined so as to minimize
(1 - ’w)Ro + wR, .

Suppose that ¢ approaches zero. Then A and —B are large and Wald’s ap-
proximations [6] give
a6, B~ e
(2.3)
&N |Hy)) ~ —B/I,, and &(N |H,) ~ A/l

where I, and I, are the Kullback-Leibler information numbers given by

(24) I = [ log (@) /fi(@)fo(a) da
and

(25) I = [ 1og () @) i(a) d
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and are assumed to exist finite and positive. Minimizing the approximation to
(1 — w)Ry + wR; we find that

{(2.6) A ~ —log ¢ + log[lire(1 — w)/w] = —log ¢,
(2.7) B =~ log ¢ + log[(1 — w)/Iyriw] = log ¢,
a 5 we/lire(1 — w), 8~ c(l — w)/Irw,
&(N | Hy) =~ —log ¢/I,, &N | Hy) ~ —logc/I,,
(2.8) Ry~ —clogec/ly, and Ry = —clogc/I;.
Remarks:

1. These results can be verified more rigorously by using Wald’s bounds on
his approximations when they apply. Our later results will generalize these
approximations of Ry and R; .

2. The risk corresponding to the optimum strategy is mainly the cost of ex-
perimentation.

3. The optimum strategy and its risks depend mainly on ¢, I, and I; and are
relatively insensitive to the costs 7 and r; of making the wrong decision and to
the a prior: probability w. Note that doubling 7, and 7, is equivalent to cutting ¢
in half as far as the strategy is concerned. The consequent change in log ¢ which
determines A and B is relatively small. That is, log ¢ is changed to log ¢ — log 2
while log 2 is small compared to log c.

Suppose that the experimenter is given a choice of one of two experiments E;
and E. but that the one chosen must be used exclusively throughout the se-
quential testing problem. We designate the information numbers by Io(E1),
Il(El), Io(Ez) and Il(Ez). If ¢ is small and Io(E1) > Io(Ez) and I1(E1) > Il(Ez),
then it makes sense to select E;. If, on the other hand, I,(E:) > I,(E:) and
Ii(Ey) < I(E.), then E; would be preferable if H, were “true” and E, would
be preferable if H; were. Since the true state of nature is not known, there is no
clear cut reason to prefer E; to E, without resorting to the a prior: probabilities
of H 0 and H 1.

The above rather artificial problem illuminates the more natural one where,
after each decision to continue experimentation, one can choose between E,
and E, . If the cost of sampling is very small, it may pay to continue sampling
even though we are almost convinced about which is the true state of nature.
Thus even if we feel quite sure it is Hy, we may still be willing to experiment
further, and furthermore it would make sense to select E; or E; by comparing
Iy(E,) with Iy(E,).

To be more formal we may select E; or E; by comparing I,(E:) and Io(E,)
if the maximum likelihood estimate of 6 based on the previous observations is
6 and by comparing I:(F:) and I;(E) if the maximum likelihood estimate is
6, . Such a procedure may be short of optimal. On the other hand if ¢ is very
small, the most damage that could occur would be due to the nonoptimal choice
of experiment for the first few of the many observations which are expected.
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The stopping rule for the single experiment case may be naturally inter-
preted in terms of a posterior: probability as follows: there are two numbers of
the order of magnitude of c. Stop experimenting if the a posterior: probability of
H, goes below the first number or if the a posterior: probability of H; goes below
the second number. The expected sample sizes are relatively insensitive to varia-
tions in the stopping limits. More specifically, if the a posterior: probability limits
are any numbers of the order of magnitude of ¢, « and B are of the order of magni-
tude of ¢ and E(N | Hy) = —log ¢/Iy and E(N | H,) =~ —log ¢/I, .

In view of the standard derivations of the Bayes procedures for the one
experiment sequential testing problem, it seems natural to stop when the a
posteriort probability of Ho er H; go below numbers of the order of magnitude of
c. An example of such a stopping rule is obtained by selecting A and B equal
to —log ¢ and log ¢ respectively. Then if E” is the experiment selected on the 7th
trial and =, is the outcome let z; = log [fi(z: , E®)/fo(z: , E®)] where fi(z, E?)
and fo(z, E®) are the densities of the outcome of E”. Finally, after the nth
experiment, continue sampling only if S, = D 2 lies between B and A.

3. A special problem involving composite hypotheses. Comparing two prob-
abilities. In the preceding section a method was proposed for the sequential
design problem for testing a simple hypothesis vs. a simple alternative. The
situation becomes more complicated when the hypotheses are composite. To
motivate our procedures for this more complex problem, we shall discuss heu-
ristically the special problem of comparing two probabilities. This problem may
be regarded as a prototype of the general sequential design problem for testing
hypotheses. We shall devote our main attention to the design aspect and leave
the stopping rule in a relatively unrefined state.

It is desired to compare the efficacy of two drugs. The experiments £, and E,
eonsist of using the first and second drugs respectively. The outcome of these
experiments are success or failure, success having probabilities p; and p. in the
two experiments. The two hypotheses are Hy:py > p, and Hseipy < ps.

After n observations consisting of n; trials of drug 1 and n. trials of drug 2,
which led to m; and m, successes respectively, the maximum-likelihood estimate
of 6 = (p1, p2) is given by 8, = (Pin, D2n) = (ma/n1, Mme/ny). We shall select
our next experiment according to the following idea. Consider the experiment
which would be appropriate if we believed that 6 were 6, and we were testing
the hypothesis § = 6, vs. the simple alternative 8 = 8, which is the “nearest”
parameter point under the “‘alternative hypothesis.”’” To be more specific suppose
my/ny > ma/ny . Then 6, is an element of the set of 6 for which H, is true. The
“nearest”’ element under H.; is not clearly defined. For the present let us define
it as the maximum-likelihood estimate under H,. Then

7 =(m1+mz m1+mz)
" mtn’m+n

; m A ne A ™m A ne s
B [(’nl + ’n2) b+ (’nl + n2> pﬁ'(’nl + nz) bt (m + ’M) Pz] )
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Note that 8, is a weighted average of ($1, p1) and (P2, P.) where the weights are
proportional to the frequencies of E; and E, . If we were testing 6§ = 4, vs. 8 =
4, and strongly believed in 8 = 8., we would select the experiment E for which

(381)  I(4, 6., E) = ;log [f(z, ba, E)/f(x, b, E)] (=, bu, E)

8 as large as possible where f(z, 6, E) is the probability of the data for experiment
E when 0 is the value of the parameter.” Thus

I[(pl ) p2)7 (prr pz*), El]

(3.2)
= pulog [py/pt] + (1 — p1) log [(1 — p1)/(1 — pY)]
I[(p1, p2), (91, p2), Eil

= pa log [pe/p] + (1 — p2) log [(1 — p2)/(1 — p2)].

It is clear from these expressions and from intuitive considerations that if
pt is close to py , Ei is relatively uninformative and if ps is close to p. , Es is rela-
tively uninformative. Thus if 7, is much larger than n, , 6, is close to (1, ;) and

I(én,én,El) < I(én,én,Ez)

and E, is called for. Similarly if n, is much smaller than n,, E; is called for.
For a specified 8, , there is a unique proportion A(8,) such that the two informa-
tions are equal if ns/(ny + n2) = N(6,). If na/(m + n2) exceeds N(6,), E, is
called for.

In general, the set of (py, ps) for which

I[(p1, p2), (p1, P2), B1)] = I((p1, p2), (1, pt), s}

is easy to characterize. See Fig. 1. It seems clear that after many observations
&, will be close to 8 = (p1, pz) and 8, will be close to that point 6* = 6*(9) =
(pt, pr) for which pf = p; and I(8, 6%, E,) = I(6, 6%, E;). Furthermore the
proportion of times that E; is applied in the long run is determined by the rela-
tion of 6* to 6. That is to say if 8 = (p1, p2) and 6* = [(1 — N)p1 + Ape,
(1 — N)p1 + Aps] then ng/(m + m2) will tend to be close to N = N(8).
The point 6* and the ratio X can also be interpreted from another point of
view. Essentially 6* is that point under the alternative hypothesis for which
maxg I(8, 6%, E) is minimized. (In a sense this property can also be interpreted
to say that 6* is the ‘“nearest” point to 6 under the alternative hypotheses.)
At 6*, it doesn’t matter which experiment is selected. On the other hand if we
regard I(6, ¢, E) as the payoff matrix of a game and an experiment were to be
chosen to maximize min,. I(6, ¢, E) [a is the set corresponding to the alter-
native hypothesis], the randomized maximin strategy would give E; and E,
weights 1 — A and \ respectively. Thus 6* and N correspond to the solutions of a
two person zero sum game with payoff (6, ¢, E) where one player (say nature)

2 We work against the ‘“‘nearest’’ alternative under the intuitive assumption that this
is the alternative which will make our risk large and which we must guard against.

(3.3)
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*
I(e,0 ,E2) > I(e,e*,El)

1.0 : -
87
06‘
B
o4
(paipa) )
Ny /

0 o2 A4 .6 .8 1.0
*
Py
FIGURE 1
The set of 6* = (p1 , p:) for which Es is preferred to B, , i.e.,
I(e, 6*, Es) > 1(9, 6*, Ey)

for a specified 6 = (p;, ps2) in the drug testing problem

selects ¢ to minimize I and the other player (the experimenter) selects E to

maximize 1.

It seems clear that the procedure recommended before will not be substan-
tially affected, when c is small, if it is modified so that the n + 1st experiment is
E; with probability 1 — N\, and E, with probability A, where 1 — A\, and A,
correspond to the experimenter’s maximin strategy based on the payoff matrix

I( éﬂ X2} E ) .
In Table 1, we tabulate as functions of 6,
a) 6*(9), the minimax choice of nature,
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TABLE 1
Tabulation® of p*(6), N(60), I1(8) and e(0) where
0 = (p1, p2) and 6*(6) = [p*(6), p*(6)]

7 2 .01 .05 .10 .20 40
p* .0276
A .560
-05 I .00329
e .988
p* .0479 .0737
10 A .579 .526
: I .00997 .00200
e .978 .995
p* .0889 .118 .148
2 N .585 .547 .520
: I .0258 .0120 .00435
] 971 .992 .995
p* 171 .205 .239 .297
40 N .588 .557 .537 .515
: I .0637 .0429 .0277 .0105
e .973 .988 .992 .999
p* .260 .297 .333 .394 .500
60 N .576 .551 .534 .515 .500
: I 111 .0855 .0648 .0375 .00874
e .980 .991 .995 .999 1.000
p* .363 .400 .438 .500
80 A .553 .533 517 .500
: I 174 .145 .120 .0837
e .990 .996 .997 1.000
p* .425 .463 .500
90 A .538 .514 .500
: I 217 .187 .160
] .998 .999 1.000

b) A(6), the proportion of times E, is used in the experimenter’s maximin
strategy,

c) I(0) = I(6, 6%(0), E,) = I(6, 6%(9), E,), the value of the game, and

d) e(8) = min,., [I(6, ¢, E1) + I1(6, ¢, E:2)]/21(6, 6*(0), Ey),
which represents a measure of the relative efficiency of using each drug half
the time to the procedure advocated. Evidently there is no great loss of efficiency
in using each drug half the time and this prototype example is mainly useful as
an illustrative device.

3 By symmetry we need only consider p; < p2 and p1 + p2 £ 1.
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4. Formal description of the general procedures. It is desired to test

H,:6 ¢ w1
v8. the alternative Hz:0 ¢ w;. There is available a set of experiments {E} each
of which may be replicated. Let f(z, 6, E) be the density of the outcome z of
experiment E with respect to a measure uz . Let

(4~1) I(al, 0z, E) = flOg [%]f(x; 017E) dI‘E(w)‘

Designate the nth experiment selected by E‘™. Although the choice of the
n + 1st experiment may depend on the past, once it is selected, its outcome is
assumed independent of those of the preceding experiments. The maximum-
likelihood estimate of 6 based on the first n observations is designated by 6, .
If 6 € w1, we call H, the hypothesis of 6, H, the hypothesis alternative to 6, and
a(6) = w; the set alternative to 0. If 0 & w, , the hypothesis of 6 is H; , the alter-
native hypothesis is H; and the alternative set is a(§) = «; . Let 6, be the maxi-
mum likelihood estimate of 6 under the hypothesis alternative to 6, . If wy,
ws, or the union w; U w; are not ‘‘closed” we may have some difficulty due to
the nonexistence of these estimates. We shall assume throughout that suitably
closing w; and w; and, if necessary, taking 6, and 8, on the boundary of w, and
w2 eliminates this difficulty. In particular in the drug testing problem 8, lies on
the boundary separating w; and ;.

Let E(6, ¢) be any experiment which maximizes I(6, ¢, E). We assume that
such information maximizing experiments exist. Let us regard (6, ¢, E) as the
payoff matrix of a two-person zero-sum game where one player (seeking to mini-
mize I) selects ¢ among the elements of the closure of a(8), the set alternative to
6, and the other player (seeking to maximize I) selects E as an element of {E},
the set of available strategies. Now suppose that the experiment E is selected by
some random mechanism corresponding to a probability measure \ on {E}.
Then the corresponding information is [ I(6, ¢, E) d\(E). Since experiments
may be selected in such a fashion we extend the space of available experiments
to include this convex set of all randomized experiments. This set is equivalent
to the class of all randomized strategies of the second player (experimenter)
in the original game. Thus if the original game had randomized or pure solutions,
the second player in the extended game has a (not necessarily unique) maximin
strategy E(68) which is a pure or randomized experiment. The value of the game
is given by
(4.2) 1(0) = infecay 1(6, ¢, E(0)).

Let E‘™ represent the experiment used for the nth trial, z, the corresponding
outcome,

(4.3) 2n(6, ¢) = log [f(za, 6, B™)/f(zn , ¢, B™)),

n

(4'4) Sﬂ(or ia) = Z z,~(0, (0),

[
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and

n

(4.5) S, = Z 2i(bn, 05).

We define our procedure A as follows. Stop sampling at the nth observation
and select the hypothesis of 8, if S, > —log c. If sampling is to be continued let
E"™* = E(6,) which is to be defined in some unique and measurable way
consistent with the above definition of E(#).

The stopping rule described above is rather unrefined. It does not require
much imagination to see how to go about refining it. On the other hand such
refinements will not be necessary for the asymptotic results we want and so we
shall not study them here.

b. Asymptotic characteristics of procedure A. In this section we shall eval-
uate the asymptotic characteristics of the procedure A of Section 4 for the case
where there are only a finite number of states of nature and a finite number of
available -(pure) experiments. We shall show that for this procedure the prob-
ability of making the wrong decision is O(c) and the expected sample size is
asymptotically no larger than —log ¢/I(6). In the next section we shall show
that this is as well as can be done.

The arguments will involve the fact. that as ¢ — 0, the required sample size
gets large. For large samples, 6, tends to be equal to 8 for all but the first “few”
observations. Then, E'” = E(6) and for ¢ ¢ a(8), &{2.(0, ¢)} = I[6, ¢, E()]
= I(60) and the sample size required for S, to reach —log ¢ is approximately
—log ¢/1(9).

For the results in the rest of this paper we make the following assumptions.
There are s possible states of nature which are divided into the two disjoint sets w;
and w, . The set of available (pure) experiments is {E1, Es, - -+ , Ei}. The losses
due to making the wrong decision are assumed to be positive. That is, (0, ¢), which
18 equal to the loss due to selecting H ; when 0 i3 the state of nature, satisfies

r(0,2) =0 if 6¢uw, 1=1,2
(5.1)
r(6,2) >0 if 0zw;, 1 =1,2.
If the experiment E yields outcome x and 0 and ¢ are distinct, then

_ 1ne 1@, 6, E)
(5.2) 2(0, ¢, E) = log oo )
has finite variance* and

(53) 10,4, ) = [ log [H] f(z, 6, B) dus(z) > 0.

4 If 2(0, ¢, E;) has finite variance for each of the finite number of pure experiments, it
follows easily that the variance of z(0, ¢, E) is bounded for all randomized experiments.
Similarly I(6, ¢, E) is bounded away from zero and infinity.
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Hereafter we represent the true state of nature by 6, which we assume to be in
wy . Unless clearly specified otherwise, all probabilities and expectations refer
to 00 .

LemMA 1: If the stopping rule is disregarded and sampling is continued accord-
ing to any measurable’ procedure,

(5.4) 0, — 6y w.p.l.
In fact there exist K and b > 0 such that
(5.5) P{T > n} £ Ke*"

where T is defined as the smallest integer such that 8, = 6o for n = T.

Proor: Assign a prior: probability 1/s to each state of nature. Then 8, is the
value of @ which maximizes the a posterior: probability p.(68) after the nth ob-
servation. Furthermore,

n ) ) n
(56) log [p;"((?))] = Z; log [%] = ; 2:(60,0) = 8.(60, 0)

and 0, = 6 if S.(6, 8) > O for all § > 6, . It suffices to show that for each
0 5 6y, there is a number b such that P{S,(6,, 6) < 0} < ¢™". But

P{Sn(oo ) 0) = O}g{et.s,.(oo,o) l Sn(ao , 0) < 0} < S{ees,,(o.,,o)}

(5.7)
P{8S.(6, 0) < 0} < &{e™") for ¢ =< 0.

Now &{[f(z, 6, E)/f(x, 6, E)]"} is the moment generating function of
Z(oo ) 0’ E) = IOg [f(xi 6o ’ E)/f(xy 0’ E)]

and is equal to one for t = —1 and ¢ = 0 and, by convexity, is less than one for
—1 < ¢t < 0. Thus for a randomized experiment E where E; is selected with
probability p;,

k
g e—z(ﬂo,O,E’)ﬂ = & 6—2(00»0.Ei)/2
{ b= 2wl }

is bounded below one, and there is a number b > 0 such that

maxg 8{¢ " P = ¢ < 1,
Thus
e N | py a2 S €
and
P{S.(6, 0) < 0} < &{e54PA < 0",
LemMA 2: For procedure A, the expected sample size satisfies

(5.8) &(N) = —[1 + o(1)] log ¢/I ().

5 A procedure is considered measurable, if at the nth stage, the experiment selected is
a measurable function of the data z1, z2, -+, Zn.
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Proor: We wish to show that, given any ¢ > 0, there is a ¢* = ¢*(¢) such that
&(N) = —(1 + ¢) logc/I(6) for ¢ < c*

It is obvious that N < max,.u, (N,, T') where N, is the smallest integer for
which > %260, ¢) > —log ¢ for all » = N,. In view of Lemma 1, it suf-
fices to show that for each ¢ € w; and for each ¢ > 0, there exist K = K(e¢, ¢)
and b = b(e, ¢) > 0 such that

P{N, > n} < Ke™" for n> —(1 + ¢) log ¢/I(6,).

To show this it suffices to prove that for each ¢ ¢ w; and each ¢ > 0, there exist
K and b > 0 such that

t=1

(5.9) P{i 2:(60, ¢) < —log c} < Ke® for n> —(1+ ¢) log c/I(60).

But

n

2z, ¢) = g [2:(60, ) — I(60, ¢, B?)]

+ 3 L0, 0, B®) = I(h, 0, B@))] + n1(5, ¢, B(0)).

=1

If ¢ >0, 2(60, ¢, E;) — I(60, ¢, E;) + & has positive mean and finite
moment generating function for —1 =< ¢ < 0 for each ¢ and pure experiment
E; . Hence the left-hand derivative of the moment generating function is positive
at ¢ = 0. Thus there is a * = t*(¢) < 0 and b; = bi(e) > 0 such that

8{et‘li(oo.w.li'.')—l(0o.¢.E.')+e1]} < e"bl
Consequently,
g{el'['(00.19.5')—1(00.¢.E)+¢11} < e—b;
for each ¢ and E. Then, as in our proof of Lemma 1,

t'[‘ﬁ 24(00,0)—1 (00'¢.1!("))+¢1:|
&fe !

} é e—b)u
and
(5.10) P{Z1 [2:(80, ) — I(60, 0, E®)] < —qn} < e,

Furthermore, it follows from the definition of 7' that

); [L(6o, 0, E®) — 1(bs, ¢, E(o.,))]l <KT

and hence, applying Lemma 1,

(5.11) P{g [I(60, ¢, E®) — I(60, ¢, E(6))] < —ezn} < Ky,
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Finally,
(5.12) I(60, ¢, E(6)) = I(6) for ¢ € wy .
Then combining (5.10), (5.11), and (5.12) we obtain

P{i 25(00, (p) < n[I(oo) ol 63]} é K46—b4”

i=l

from which the desired result (5.9) follows.
LemMA 3: For procedure A, the probability of error (rejecting Hy) is o = O(c).
Proor: On the set A,., in the sample space for which we reject Hy :0 € oy
at the nth observation and for which 6, = ¢ & ws

2 2o, 60) = D 2i(6a, 8,) = —logec

i=1 i=1

and

n

H f(xi’ 007 E(i)) = CH f(xi,SO, E(i))~
=1 i=1

P{A,,} = fA ﬁ f(zi, 60, E®) dugcy(z1) - -+ dugon ()

np =1

= CL I f(xi, 0, E®) dpzcr(z1) -« - dugeon(@a).

e =1

The last integral is the probability of the set A,, when ¢ is the state of nature.
Thus

a= 2, iP{AW} < D ¢ <sc= 0(c).

pewg n=1 QEW Y

This proof is rather standard and obviously applies to any measurable proce-
dure with the same stopping rule as procedure A.

Combining Lemmas 2 and 3 we have

TuroreEM 1: For procedure A, the risk function R(6) satisfies

(5.13) R(8) £ —[1 + o(1)]c log ¢/1(8)
for all 6.

6. Asymptotic optimality of procedure A. We shall state and prove Theorem
2 which together with Theorem 1 will establish the asymptotic optimality of
procedure A in the sense described below.

THEOREM 2: Any procedure for which 1(8) > 0 and

R(6) = O(—clogc) for all 0

satisfies
(6.1) R(6) = —[1 + o(1)]c log ¢/I(8) for all 6.

Combining Theorems 1 and 2 we see that for any procedure to do substantially
better than A for any 0 implies that its risk will be of a greater order of magnitude
for some 6. In this sense procedure A is asymptotically optimal.
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To prove Theorem 2 we shall use two lemmas. The first will show that for the
probabilities of error to be small enough,

N

(6.2) 860, ¢) = ; 2i(o, @)
must be sufficiently large for all ¢ in w, with large probability. The second will
show that when n is substantially smaller than —log ¢/I(6o), it is unlikely that
the sums Y 1 2:(6, ¢) can be sufficiently large for all ¢ & w; .

Lemma 4: If ¢ € we, Placcept Hy |0 = ¢} = O(—c log c¢), P{reject Hy} =
O(—clogc),and 0 < € < 1, then

(6.3) P{S(6,¢) < —(1 — €) log c} = O(—c"log c).
Proor: There is a number K such that

0

—Kclogc = P {accept H, |0 = o} 2 Z;f f(z, ¢) du(z)
n=. An
where f(z, ¢) is the density on the sample space when 6 = ¢ and A4, is the subset
of the sample space for which S(6, ¢) < —(1 — €) log ¢ and H, is accepted
at the nth step.

~Kelogez > [ [f(z,)/i(z w11z, &) du()

00

=> L e (x, ) du(z) = cl"‘gP{A,.}.

n=1

0

Z; P{A.} = O(—c'logc).
Pfreject Hy} = O(—clogec).

P{S(6, ) < —(1 — & loge} = ZIP{A,.} + P {reject H,} = 0(—c"log ¢c).

ne=.

LEmma 5: If € > 0,

(6.4) P{ max miniz;(oo,qo) = n[I(6) + e]}—>0 as n— o,

l<smgn gewy i=1

Proor:
250, 0) = 2 (00, 0) = 1(0, 0, ED)) + 32, 160, 0, B?)
= Aim + A2,
where

i = 3 00, 0) = 1(0, 9, B)]
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is a martingale. Now Asm = 213 I(60, ¢, E®”) represents m times the payoff
for the game where nature selects ¢ and the experimenter selects some mixture
of his available strategies. Thus ming.., Asm < mI(6) < nl(6). Thus

min¢¢w2 (Alm + A2m) ; n[I(GO) + E]

implies that A;, = ne for some ¢ and
P{ max min Z 2:(60, ) = n[I(6) + e]} < X P{ max Ain = nd.
1<m<n pewg =1 QpEWY ISmSn

Since A1 is a martingale with mean 0, we may apply Doob’s extension of Kolmo-
goroff’s extension of Tchebycheff’s inequality ([3], p. 315), to obtain

P { max A, > n¢g < K/né foreach ¢ &ws.

l1<mz<n

Lemma, 5 follows.
Now we are in position to prove Theorem 2. Let

ne = —(1 — ¢) log ¢/[I(6) + €;
n) < P{N =n. and S(f,e) = —(1 — €) logc for all ¢ & ws}
+ P{S(6s,¢) < —(1 — €) logc for some ¢ & ws}.

By Lemma, 5, the first term on the right approaches zero. The condition B(8) =
O(—c log ¢) for all § permits us to apply Lemma 4 and the second term on the
right approaches zero. Hence §(N) = —[1 + o(1)] log ¢/I(6). Theorem 2

follows.

P(N

IIA

7. Miscellaneous remarks.

1. The asymptotic optimality of procedure A may not be especially relevant
for the initial stages of experimentation especially if the cost of sampling is high.
At first it is desirable to apply experiments which are informative for a broad
range of parameter values. Maximizing the Kullback-Leibler information num-
ber may give experiments which are efficient only when 6 is close to the esti-
mated value.

2. It is clear that the methods and results apply when the cost of sampling
varies from experiment to experiment. Here, we are interested in selecting ex-
periments which maximize information per unit cost.

3. The ideas employed in this paper seem equally valid and applicable to
problems which involve selecting one of k mutually exclusive hypotheses.

4. A minor modification of the stopping rule would be to continue experimen-
tation as long as i 2:(8;, 6;) < —logc. This rule which involves

Z:;l Zi(éi ’ 9.‘)
instead of D i 2:(6,, 6,) may be computationally easier to deal with occa-

sionally. It is not difficult to show that Lemma 2 applies for this stopping rule.
The author has not proved that Lemma 3 also applies.
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5. A modification of the experimentation rule is the following. Select E™™
so as to maximize® I(8,, 6., E). It is easy to see that Lemma 3 would apply
for this or for any measurable experimentation rule. While it is expected that
Lemma 2 would apply for some examples the example below seems to indicate
that it should not apply in general for this modified experimentation rule.

Note that for large samples we will have

n

®
> 26, 0) X n;

Mip
p 1(6o, ¢, E:)

i=1

where m;, is the number of times E, is applied in the first 7 experiments.
Assuming 8, = 6 € w1, 8, is that value of ¢ £ w, which minimizes

21260, 0).

Thus 8, essentially minimizes Y iy (min/n)I(60, ¢, E;). The successive choices
of 6, and E™"™ correspond to the following strategies of two players of a game.
Player 1 sees what strategy repeated » times would have been most effective
against the combination of the past choices of player 2. Player 2 selects E™™
as though player 1 would select that most effective strategy. If for this iterative

choice we have

min [Z I(6o, o, E“’)]/n = I(6) — o(1)

pewg i=1

Lemma 2 should apply. The following example shows that we can not always
obtain the above inequality if there are more than 3 available experiments. [In
our prototype example, it is quite clear that no such difficulty will arise.] Let
I(60, ¢, E) be given by the following table.

TABLE 2

I (90 )y Py E )

E, Es Es
@1 10 1 6
@2 1 10 6

Then our iterative procedure will always lead to E; or E, . In fact each will be
used approximately half the time giving a limiting value of 5.5 for

Z;I(Oo, (’i’E(i))/ny ] =1,2.

On the other hand I(6,) = 6. Clearly this modified experimentation rule is not
as dependable as the one we chose.

¢ This rule was essentially the first one suggested in our study of the prototype example
of Section 3.
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6. The asymptotic study of the problem of testing a simple hypothesis vs. a
simple alternative suggests that it should be possible to refine the stopping rule
for the composite problem. While the main term of the risk should not be affected
the higher order terms could probably be improved. Such improvement may be
quite important in the case where c is not very small. A refinement in the stop-
ping rule would be relevant for problems of testing composite hypotheses even
if the problems do not involve the choice of experiments.

7. In Equation (5.3) we require that 1(6, ¢, E) > 0. This condition, used in
the proof of consistency in Lemma 1, is not satisfied in the drug testing problefn.
There, IISiIlg drUg 1 Wﬂl give I(oy @, El) = O if 0 = (pl ) p2) a'nd [ (pl ) p2)‘
However, this condition can be relaxed, if procedure A is modified slightly to
assure consistency. For example, let E be a specified mixture involving each of
the. pure experiments. If we use E instead of E™ whenever n is a perfect square,
we will have the desired consistency so long as there is an E; for each 6 and ¢
such that I(0, ¢, E;) > 0. Even this may be relaxed since it is not necessary to
discriminate between 6 and ¢ if they correspond to the same hypothesis. In fact,
it suffices to have I(6) > O for each 6.
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