ASYMPTOTIC EXPANSIONS IN GLOBAL CENTRAL LIMIT
THEOREMS

By RarpH PALMER AGNEW!
Cornell University

1. Introduction. Let £, £ ,- -+ be independent random variables having the
same d.f. (distribution function) F(z). We suppose that

(1L.1) [wxdF(x) =0, fw FLdF(z) = 1

so that F(z) has mean 0 and standard deviation 1. Let F,(x) denote the d.f.
of the normalized sum

(1.2) B+ b+ +&)/m
A special case of the central limit theorem then asserts that, for each individual

z in the Iinterval — o < z < o,

(1.21) lim F,(z) = ®(x)

n->0

where ®(z) is the Gaussian d.f. defined by
(122) a(z) = (207 [ " du.

Tt is our purpose to study the behavior as n — « of the constants C,, defined
by

(13) Co= [ IFu(a) = 9(@) [ da.
For each p > 0, let constants C.(p) be defined by
(131) Ca(p) = [ _Fala) = 2(@) " da

when these integrals exist, that is, are finite. It is known from [1] and [2] that
the hypotheses (1.1) imply that if p > % then the constants C.(p) exist and
limsoCr(p) = 0. Beyond this, not very much is known about the constants
C.(p). The moments a; and the absolute moments 8; of F(z) are defined by

(14) o = [wx"dF(x), B = fmlacl'c dF (z)
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when these integrals exist. If 8; exists, then an inequality of Esseen ([5], p. 78)
shows that there is a constant K(8;), depending only upon Bs, such that

K(Bs) log (2 + %)

n} 14+ |z
This implies that if 85 exists, then the constants C,(p) exist when p > % and
C.(p) = O(n~*"*). In particular, if 8; exists then C,, = O(n™"). There is a sense
in which this result cannot be improved because it is shown in [2] that if F(z)
is the symmetric binomial d.f. satisfying (1.1), then

11 . 1
» comtdvo(2)

The only other case in which the constants C, have been appraised is that for
which F(z) is the d.f. of a random variable # uniformly distributed over
—a £ z < a; in this case (1.1) implies that a = 3t and it is shown in [2] that

1 3 1
(1.61) Cn _EszrO(fT)'

One of our main purposes is to give conditions under which there exist con-
stants Dy, Dz, D;, - -+ such that the expansion

(1.5) [Fa(z) — @(2)| =

D D. Dy 1
17) 0,,=7L_1+77;+...+n_k+0<ﬁ>
is valid for each £ = 1, 2, 3, --- and to give explicit expressions for D; and

D, . Such results are given at the ends of sections 4 and 6. Binomial distribu-
tions are treated in section 7, and the symmetric binomial d.f. is treated more
extensively in section 9.

2. Formulas for the constants C,. Information about the constants C, is
obtainable by use of the c.f. (characteristic function) ¢(t) of F(x) which is
defined by

(2.01) o(t) = [ ¢ dF (z).
It is shown in [2] that
® 11 (% » —nt2j2 2 At
(2.02) L |Falz) — @) [Pz = - fo 1230) i
Hence
11 n_ —nttjz2 0l
(2.1) Cn = poe il [[o(2)] € e

The hypotheses (1.1) imply that, at least when &k = 0, 1, 2,

(22) 6® () = [: (iz)*e™ dF (z)
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and hence that ¢(0) = 1, ¢'(0) = 0, and ¢”"(0) = —1. This implies that we
can choose a positive constant T such that

(2.21) lo(t) | <1 o<t=").
Let constants &;, 8, --- be defined by .
(2.22) 3, = log n)/n? (n=123 ).

For values of n so great that 0 < 8, < T, we split C, into the sum of four terms
by putting

(23) Co=0CP +0R+C% + P
where
w_11/(° (e n —nej2 df
(24) ¢V =al [¢(t)] [e®]"} " &,
(2.5) 0(2) — l¢( )l2n dt
@ _11 no_ e 2 dt
(2.6) D=5 " (o] &
(2.7) 0(4) — 1 lf l¢(t) |2n dt.
Estimation of € and C'? offers no difficulty; as we shall see,
(2.81) CP =o(n™), CP =o(n™

where o(n ™) denotes a quantity which is o(n™) for each fixed positive constant
k. Since | e ™"?| < 1 and | $(¢f) | < 1, it follows from (2.4) that

[c?] = = 3[ £ ™ (nt) dt
(282) 131 131
—-nt’/Z —n62/2 - —w
1-’—1};;5_3, (t)dt ———5—3-6 o(n ).
To estimate C2, let ¥(t) = | ¢(2) |2. Then ¢(0) = 1,/ (0) = 0, and ¢"(0) =
—2. This and the fact that ¥(¢) < 1 when 0 < ¢ < T imply that, for each
sufficiently great n,

(2.83) max [¢() | <1 — 8%/2.

=t

<

Hence, when 7 is sufficiently great,

(2) 11 r 2 no—2
|5 <- . (1 — 8%/2)"s," dt

(2.84) .1 13;2 (1 s ) _ naffn . [1 _ <1o2gnn>”]” = o(n™).

This proves (2.81).
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The problem of estimating C, is therefore reduced to the problem of esti-
mating C? and C%}. Instead of (2.3), we henceforth use the formula

(2 9) C - 0( —-w) + C(3) + C(4)

3. The Constants C?’ . In this section we appraise the constants C*¥ in terms
of the Thiele [7] semi-invariants v of F(z). We suppose that, for some integer
m for which m = 3, the moments a, and B, exist. Then, as { — 0,

.1 s =1-L 4 3 @ @ oy + o)

and using the ordinary expansion of log (1 4+ z) in powers of z gives
(32) log () = — &£+ 35 900, 4 o)

where

Y3 = asz, ‘Y4=a4—3, 'Ys=vt5—100!3,
v = ag — 1504 — 10a3 + 30, - - -

The constants s, vy4, - -+ are the Thiele semi-invariants of F(z) which are
treated in the books of Cramer [3], [4] and Gnedenko and Kolmogoroff [6] and
which have simplified forms here because a9y = 1, &y = 0, and a; = 1. From
(3.2) we obtain, for each fixed n,

(3.21)

(3.3) [p()]" = %"
where w is the function of n and ¢ defined by
m o\ k
(3.31) w = n[é (1;:? v + o(t'”)].
From (2.6) and (3.3) we find that
@w_ 11" o dt
(3.4) Cﬁ =’77%'-1‘-‘ o e ¢ le _llzt—{.

Supposing henceforth that 0 < ¢ < 8, , we see from (2.22) that
0 < nt® < (logn)®/n}
and hence from (3.31) that w = 0(1) as n — . Therefore we can use the

formula

m L3
(3.41) ¢ —1=>2 40w

=1 k!
and (3.31) to obtain a formula giving ¢ — 1 as the sum of a finite number
of terms involving n, ¢, and vs; v4, -+ , Ym . When this finite sum is written
down, it is found that
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2
(3.42) [tlle"’—ll] =Iu+'iv|2=u2+v2
where
2
(343) u=g—int3—;—;n2t5+ e,
3

G £ O T RPN £ 2 L ¥ Ys 38 1 ...

(344) v = 6nt + 120nt 144nt + 1296nt + .

In (3.43), (3.44), and formulas which follow, the final dots represent finite
sums of terms which turn out to give contributions to C‘® which are of lower
orders of magnitude than the contributions of the terms which precede the dots.
From (3.42), (3.43), and (3.44) we obtain

[1 e — 1 ']2 _ s ap L 5YE = Byavs ae

36 2880
(34:5) 2 4
Y3Y4, 38 V3 400

+ g6z "t " st T
From (3.4) and (3.45) we see that C? isa linear combination, with coefficients
depending upon w3, v:, : -+, of integrals of the form

3

(3.5) T =2 [ ™ rge g

ntJo
where » and q are positive integers. Putting ¢ = 7w in (3.5) and using (2.22)

gives

1 logn it %
(3.51) I = F’?’-’L‘ e “u? du.

But, when = is sufficiently great,

0
2 2 20—1 —u2/2\ —u2/2
e"uqdu=f (e e ™ Py du

logn logn
(3.52) ) ) 3}
< e Py dy = ¢ 1B = o(n7¢),
logn
Hence
Jn = o(n™ 1 fm e g
(3.53) ,.—on)+1m_—poe w? du.
Using a standard formula for the integral in (3.53) gives
3
— T (2¢)!
(3.54) Jn = O(n ) + hl—_'_‘q—_"’ q!2“+1 .

Use of (3.4), (3.45), (3.5), and (3.54) gives
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@ _ Ay | A ) Ax 1
where
(361) A, =Ly
1 96’

(3.62) Ay =

T

1 [572 MY 35vs v _ 3512]
3072 384 9216 36864 |’

and each of the constants 4;, 42, 4;, - -+ depends only upon a finite number
of the semi-invariants vs, ys, - -+ . In case the given d.f. F(z) has finite mo-
ments of all positive integer orders, the integer m of this section can be chosen
ag great as we wish and (3.6) is then valid for each &k = 1, 2, 3, --- . The ex-
pressions for A; and A4, given in (3.61) and (3.62) are particulary simple in
the important case in which #(x) is symmetric because in this case v; = 0.
The complexity of the expression for 4; increases very rapidly as k increases.

4. The constants C."; case lim sup | ¢(¢) | < 1. In this section, we suppose
that F(z) is a d.f. having a c.f. ¢(f) for which

(4.1) lintx sup [¢(2) | < 1

and show that in this case
(4.2) L= o(n™*)

where, as above, o(# ™) denotes a quantity which is o(n™*) for each positive
constant k.

It is known ([3], p. 26) that if a c.f. ¢(¢) satisfies the hypothesis (4.1), then
|#(t) | < 1 when ¢ > 0. Since each c.f. is everywhere continuous, the hypothesis
(4.1) therefore implies that if T > 0, then there is a constant # such
that 0 < 6 < 1 and |¢(¢) | < 0 when ¢ = T'. The definition (2.7) of C%* there-
fore implies that

(43) ® < fr Tt g = T

and the desired conclusion (4.2) foHows.
Thus in case F(z) has a nonwvanishing absolutely continuous component
[3, page 17 and page 25] and in other cases where (4.1) holds, we have

(4.4) Cn =o(n®) + C¥®

and the results of section 3 suffice for the estimation of C,. In particular, if
(4.1) holds and F(z) has finite moments of all positive integer orders, then
(1.7) is valid when the constants Dy, D,, --- are the constants 4,, 4,, ---
in (3.6).
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5. The uniform distribution. Let F(z) be the d.f. of a random variable ¢ uni-
formly distributed over —a < 2 < a so that F(z) = 0 when z < q, F(z) =
(x + a)/2a when —a = = < a, and F(z) = 1 when 2 = a. This d.f. has mean
0, and we assume that @ = 3! so that the standard deviation is 1. In this case
(4.4) holds. The moments a; , a2, - - - defined by (1.4) are

(5.1) o = [ (+*/2a) dz

so that a; = 0 when k is odd and a; = a*/(k + 1) when k is even. Using (3.21)
givesy; = 0 and v, = —6/5. Using (4.4) and (3.6) then gives the result (1.61).

6. The constants C\ ; case | ¢(t) | periodic. It is well known that if there
is a positive value of ¢ for which | ¢(¢) | = 1, then F(z) must be a lattice dis-
tribution and |¢(¢) | must be periodic; and, conversely, if F(z) is a lattice
distribution, then | ¢(¢) | must be periodic. Throughout this section, we suppose
that F(z) is a d.f. for which (1.1) holds and | ¢(t) | is periodic. Then | ¢(t) |
has a least positive period which we call 27.

To estimate C* we start with a method employed in [2] for the case in which
F(x) is the symmetric binomial d.f. From (2.7) we obtain

2kT+T
, w _ 11 o dt
(6.1) Ca n* T k=1 Lkr T |#(0)] ’
Since | ¢(t) | has period 2T, this unphes that
(62) P = 7% l¢(t) ["S(t) dt

‘where
S(t) = ,,:2,(2” + )7
Since | ¢(—t) | = | #(¢) |, this implies that
(®21) v = LMo mso a
where S;(¢) = S(t) + S(—t) and hence
(6.22) Si(t) = kg[(ZkT + )7+ (2T — )77
The function S;(t) is, as a function of a complex variable ¢, analytic except

for simple poles at the points 27, 47, £6T, --- and, as we shall see, it is
an elementary function. From (6.22) we obtain
_ d 0 a -1 d l_ ] 1

k=1
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Using the standard formula

= 1 1 — 7z cot =z
(6.31) k-2 222 ’
which is valid when 2 is not an integer, gives

d|1 T it

(632) Sl(t) = (—E [t_ - ﬁ; cot Z_T-] .
From this we obtain
(6.33) Si(t) = (x/2T)[esc* z — 2]
where z = «t/2T. Differentiating the ordinary power series expansion of

(cot z — z') gives a representation of the right side as a power series in z.
Putting z = #t/2T in this power series gives

1 AN 2 (=\ 1 [(at\°
(634)  Sut) = (2T> [é + 13('27) + 159 (ﬁ) + & (ﬁ) + }
The numerical coefficients in (6.34) have simple expressions in terms of Bernoulli
numbers, and the expansion is valid when |¢| < 2T. Differentiating (6.22)

gives )
128°T + ¢

4t Z m .

This shows that S1(¢) > 0 when 0 < ¢ < T and hence that S;(¢) is increasing

when 0 < ¢t £ T. With the aid of (6.34) and (6. 33), we see that

636) L (ﬁ) = 5,(0) = S(0) 5 (1) = T2 (%)2

when 0 < ¢t £ T. This shows that we could delete the factor Si(¢) from the
integrand in (6.21) without changing the order of magnitude of c®.
We now improve the formula (6.21) by showing that

(6.35) Si(t) =

(64) © = ot + 11 [ le0 P80 @
where 8, = (log n)/n as in (2.22). For this purpose, let
(6.41) E. = 51 6(0) ["S1(0) dt.

Letting ¥(t) = | #(¢) | and using (6.36) gives, for some constant M,
T
(6.42) E.<M fs 1) |* dt.

Since ¥(t) is continuous over 0 < t < T, ¢(0) = 1,¢/(0) = 0, V' (0) = —
and 0 < ¥(t) < 1 when 0 < ¢ £ T, it follows that, when n is sufficiently great,
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(6.43) max |[¢(t) | = ¢(8.) <1 — 85/2.
SnStST

This and (6.42) show that
(6.44) E, < MT[1 — 85/2]" = o(n™*).

Hence (6.21) and (6.41) imply (6.4) and (6.4) is proved.

Our estimate of C{¥ will come from (6.4). As in Section 3 we suppose that,
for some integer m for which m = 3, the moments o, and 8., exist. The formulas
(3.3) and (3.31) are then valid and, supposing henceforth that 0 < ¢ < &,,
we can use the formula

m (3
(6.5) =14+ % + o(w™")
k=1 K.
to obtain a formula giving ¢” as the sum of a finite number of terms involving
n, t, and vz, v4, ***, Ym. When this finite sum is written down, it is found
that
(6.51) e’ = u+ w, e | = u* + o
where
2
= LA £ W BTN
(6.52) U 1+24nt 72nt + ,
3
= Y3 p g Y8 s YV ag AT TR
(6.53) v 6nt +120nt 144nt +1296nt + ,

and remarks analogous to those following (3.44) are applicable. From (6.4),
(3.3), (6.51), and (6.34), we find that

(6.54) C® = o(n) + L1 f "G (1) dt
’ " nix Jo
where
(6.55) G(t)=(_’L)2[1+—"—2—t2+ﬁm‘+---].
’ " 2T/ |3 ~ 601" 36
T-ing the values in (3.54) of the integrals in (3.5) then gives
w _ B, B} 1B 1
(6.6) C,’ = - + o7 + + - + 0 (n"“)
where
(6.61) Bi= L —”—)2
’ YT et \2T)

1 1r\4 Y4 (r)2



730 RALPH PALMER AGNEW

and each of the constants B;, B., B;, --- depends only upon T and a finite
number of the semi-invariants v;, v4, --- . Unlike the constants 4,, 42, ---
in (3.6), the constant B; in (6.6) can never be zero. In case the given d.f F(z)
has finite moments of all positive integer orders, the integer m can be chosen
as great as we wish and (6.6) is then valid foreach £ =1, 2,3, --- .

Our results show that if F(z) has finite moments of all positive orders, and
if the c.f. ¢(¢) is such that | ¢(t) | is periodie, then (1.7) is valid when D, =
/ A + Bj and the constants A; and B; are the constants in (3.6) and (6.6).

7. The global version of the De Moivre theorem on binomial distributions.
Let 0 < p < 1 and let F(z) be the binomial d.f., associated with the proba-
bility p, which has mean 0 and standard deviation 1. To simplify our formulas,
we define two constants i and 8 related to p and to each other by the formulas

(7.1) h=@p/A-pP p=rA+H),
(7.11) B=(h+r"" =[p1-pP

A random variable ¢ governed by F(z) has the value —h~" with probability p
and the value h with probability (1 — p). Hence F(z) = 0 when z < h™,
F(z) = pwhen —h™ < z < h, and F(z) = 1 when z = h. A classic theorem
of De Moivre states that, under these conditions, (1.21) holds. In case p = %
and F(z) is symmetric, the constant C, in (1.3) has been estimated in [2] and
the result is given in (1.6). We now treat the general case and shall show that

there exists constants D,, D,, ---, depending only upon p, such that
(7.2) Co =D + D>+ --- + Dn™ + O(n™*7)
foreach k = 1,2, 3, --- . Moreover
1 2
11+G_a
(7.21) D1 = riﬁ W.

It is a straightforward but tedious task to extend our work to obtain explicit

formulas for D, and D; .
The definition of F(x) implies that F(z) has finite moments of all positive
integer orders and hence that (3.6) is valid. From (2.01) and the definition of

F(z) we obtain

(7.3) o) = pe ™+ (1 - p)e™ = p 4 (1 — p)e® .

While ¢(¢) is not necessarily periodic, we see that

l¢(t) | = |Ip + (1 — p) cos g7t + 4[(1 — p) sin g7 | *
=[P+ (1 — )’ + 2p(1 — p) cos gt}

and hence that | ¢(¢) | has least period 2x8. Therefore (6.6) is valid with 2T =
278 and hence (7/2T) = (28)™". Using the notation of (3.6) and (6.6), we see
that (7.2) is valid when D, = Ax + B:.

(7.31)
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To obtain (7.21), we use the formula D; = A; + B; where 4, and B, are
given by (3.61) and (6.61). Since v; = a3 and

(7.4) ag = (=h")’p+H(1—p)=h—h"
(7.41) as = (B + 1" —2) = (1—2p)"/p(1 — p)
we see from (3.61) that

(7.42) 4, = (24773 — p)Y/p(1 — p).
Since

(7.5) (v/2T)* = 1/48" = 1/4p(1 — p)

we see from (6.61) that

(7.51) B, = (24)7/p(1 - p).

From (7.42) and (7.51) we obtain (7.21).

When p = %, the d.f. F(x) of this section reduces to the symmetric binomial
or Bernoulli d.f. which we shall treat further in Section 9. In this case ¢(t) =
cos t, | ¢(t) | has period m, and 2T = x. With the aid of (3.21) we obtainy; = 0
and v, = —2. Hence (2.9), (3.6), (3.61); (3.62), (6.6), (6.61), and (6.62)

give
11 3 1 1

or
(7.61) C, = .04903 15973n~" + .00132 23193n~> + O(n™°).

8. An inequality for C, . Throughout this section we suppose that F(x) is a
d.f. having a finite third absolute moment B8; . It is known ([5], p. 201) that
there is an absolute constant E; such that
(8.1) Lub. |Fu(z) = #(2) | = Egm™  (n=1,23, ).
In the left member of (8.1) we have the distance between F,(x) and ®(z) in
the space of bounded measurable functions defined over —© < z < . It is
not unreasonable to conjecture that, for some constant E,, a valid companion
inequality is obtained by replacing £, by E, and replacing the left member of
(8.1) by the distance ¢! between F.(z) and ®(z) in the Lebesgue space
Ly(— 0, ). While F,(z) and ®(z) themselves cannot belong to the space L.,
we know that F.(x) — ®(x) belongs to the space L, whenever F(x) has finite
second moments and hence whenever F(z) has finite third moments. Thus we
conjecture that there is an absolute constant E, such that

(8.2) Ch < Epm (n=1,23, ).

To eliminate the fractional exponents, we write the conjecture (8.2) in the form
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(8.3) C, < EBgin".

Evidence that the right member of (8.3) involves 8; and # in the correct way
is obtained by examining the manner in which C, depends upon 8; when F(z)
is the binomial d.f. of Section 7. From (7.2) we obtain C, ~ D" where D; is
defined by (7.21). From the definition of F(z) in section 7, we find that

(84) B ="+ (1 = p)llp(1 — P
Squaring (8.4) and using the result in (7.21) gives

(8.5) Dy = (242")7'Q(p)Bs

where

(8.51) Qp) =11+ (G — )P+ (1 = p)T™

In the range 0 < p < 1 where p must lie, we have 5/4 < @(p) = 4. More-
over Q(3) = 4. Thus for the binomial d.f. of Section 7, we have

(8.6) C. ~ (247)7'Q(p)Bin™"

where 5/4 < Q(p) = 4.
- While the conjecture involving (8.3) and (8.2) remains unproved, the above

estimates show that if (8.3) and (8.2) are universally valid, then

(8.7) E; = (627 = .09403 15973
and
(8.71) E, = (6x)) = .30664 57195

9. The symmetric binomial or Bernoulli d.f. Let F(x) be the symmetric bi-
nomial or Bernoulli d.f., this being the d.f. of Section 7 with p = %. This d.f.
is commonly associated with problems in coin tossing. It is the purpose of this
section to obtain precise information about the constants C, defined by (1.3).
We shall focus our attention upon the formula :

Dy D, Dy Dy, Ds , Ra
9.01) Co= 2y

where D, , D, , --- are the constants in the asymptotic expansion of C, and the
numbers RB; , R, , - - - are determined by the formula (9.01) itself. Of course the
theory of asymptotic expansions assures us that the result of neglecting R, in
the right member of (9.01) gives a good approximation to C, when n is suffi-
ciently great, but until the matter has been investigated we do not know whether
the approximation will be good when n is 5 or 10 or 100.

In the first place, the numerical values of Dy, D., - -+, Ds can be calculated
by the methods of Sections 3 and 6. The details of the calculations are quite
lengthy and tedious even when full advantage is taken of the fact that the c.f.
#(t) is now the real periodic function cos ¢. The right side of (3.2) can be re-
placed by the known power series expansion of log cos ¢ which is obtained by
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integrating the expansion of tan ¢{. With the notation of (3.3), w is real and
|e® — 1|* can be replaced by ¢ — 2¢” + 1. Since | cos ¢ | has period , the
constant 27 of Section 6 is . It is found that each of the constants D;, D, - -
is a rational multiple of 7! and that

(9.02)

(9.03)

(9.04)

(9.05)

(9.06)

D, = -(1§ ~ — 00403 15972 57959

D, = %) 7 = 00132 23193 36440

D, = % a = —.00086 70907 01995

D, = ﬁ—; = 00085 22920 77129
Ds = %?T% = 00063 16664 76919

Only one of these five constants is negative, and the author has very little in-

formation about D, when n > 5.
In order to obtain information about the numbers R;, R., - -+ in (9.01) the
values of Cy, Cy, -+, Cio in (9.1) were calculated by the method which is

explained later in this section.

(9.1)

C: = .10244 13576 T = .09506 98844
C; = .04706 47193 T, = .04729 68250
Cs; = .03147 89023 T; = .03147 05293
C, = .02358 02730 T, = .02358 07083
Cs = .01885 37826 T; = .01885 37765
Cs = .01570 53613 I's = .01570 53651
C; = 01345 79250 T; = .01345 79258

Cs = .01177 31393 Ts = .01177 31395
Cy, = .01046 32283 Ty = .01046 32284

Co = .00941 56055 I = .00941 56056

The exact value of C, is

(9.11)

Cy = (2/me)t +9(1) — 2 — %

where ¥(z) is the tabulated Gaussian function defined by (9.29) below, and

(9.12)

C: = .10244 13576 27616
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with uncertainty only in the last figure which should perhaps be 7. For our next
step, the ten-decimal approximations given in (9.1) are scarcely adequate. With
the aid of the values of Cy, - -, Ci whieh were rounded to obtain the values
in (9.1), it is possible to calculate the numbers R;, R, , - -+, Ry in (9.01). It
is found that the numbers Rs, Rs, R:, Rs, Ry, and Ry, differ relatively little
from —.0009 and some heuristic considerations suggest very strongly that R,
differs from —.0009 by less than .00018 when n = 5. This in turn suggests that
the constant T, defined by

(9.13) o=t Doy Doy Doy Do 0009

must be a very good approximation to C, at least when » = 5, and that
(9.14) [ Tw — Cn| < .00018 n~° (n = 5).
The values of Ty, T, -+ Ty calculated from (9.13) are given in (9.1), and

it is easy to see how I', compares with C, when 1 < n < 8. When n is 9 or 10,
rounding errors obscure the relationships. After the above results were obtained,
the values of T';s and Ci were obtained correct to 15 decimal places. The values
are

(9.15) T's = .00588 19417 80443
(9.16) Cis = .00588 19417 81902,

and the agreement is neither better nor worse than was expected. It thus ap-
pears that C, has an exceptionally useful asymptotic expansion and that, for
example, use of (9.13) gives

(9.17) Cio = .00094 04473 45108

where the result is correct to the full 15 decimals. It would seem to be a for-
midable task to obtain even a crude approximation to Cin by direct computa-
tion of Cig .

We now proceed to obtain the formulas from which the numbers Cy, C;, - - -,
Cy in (9.1) were calculated. Let H, = nC, so that C, = H,/n. Since ¢(t) =
cos t, we find from (2.1) that

Il

I

(9.2) H, = nt [e™*” — cog™ t|* £ dt.

™ J0

According to R. J. Walker, it is not desirable to undertake to calculate H, ,
H,, --- by direct application of a computing machine to the right member of
(9.2); it is better to use the following way of expressing H, as a finite sum of
terms which are tabulated or easily calculated. From (9.2) we obtain

(9.21) H, = n*'7 2R, — P, — Q]

where
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@© —n 2 @ .
(9.22) P. =f I——f——dt, Q. =fo l—zfo—“dt

——dt.

—ni2/2
(9.23) f 1 - cos"t

We shall show that, for eachn = 1,2, .-,
(9.24) P, = (’I’lﬂl’)%,

_ nw (20 _ 7357 .- (2n — 1)
(9.25) an—l—Q%—zTn( )—‘2‘2.4.6“.(27‘_2)’
and
(9.26) R,=8:+4+Ta
where

_ (2n1r)* (B —(n—2hr22n
(9.27) S” = W— é) k € y
(9.28) Iy = oma 25 (3) 1 = 261y (n = 2k1 ™),
and ¢(z) is the thoroughly tabulated Gaussian function
(9.29) ¥(z) = (2m)~ [ e dt.

In (9.27) and (9.28), D i can be replaced by 2> <.z Where the star on the
D signifies that when n is even the term for which k& = n/2 is to be divided
by 2. The numbers H, are calculated from (9.21) with the aid of (9.24), (9.25),
and (9.26). We shall omit these calculations and hence it remains only for us

to establish (9.24), (9.25), and (9.26).
Starting with (9.22) and using standard integral formulas gives

(93) P,= f dtf e dx = f dxf e dt = 727 | 2tde = (na)}
3 o o o o

and (9.24) is established.
We now establish (9.25) by a method which exhibits material we shall use

to establish the more complicated formula (9.26). Using the Euler formula for
cos ¢ and the binomial formula we obtain, when ¢ is real,

cos™ = 27"(e" 4 )"
(94) ‘ n n
= _1; > (Z) ek Ql > ( )cos (n — 2k)t
k=0

and hence
(941) 1 — cos™t = 2—17‘2 (Z) [1 — cos (n — 2k)i].
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Putting this in the second of the formulas (9.22) and using a standard integral
formula gives

™ n

(9.42) Q. = 5,,—“;0 (k) In — 2.

While other proofs of (9.25) may be more elegant, we dismiss the matter with
the remark that it is not difficult to use (9.42) to prove (9.25) by induction.
To establish (9.26) we suppose that » is a fixed positive integer, put

(95) G(z) = f [1 — ™% cos™)t ™" dt,

and observe that G(n) = R, and G(0) = @, . Differentiating (9.5) gives
(9.51) @@ = [ " et

Use of (9.4) gives

(9.52) G'(z) = 2n1+1 i (Z) ‘/:o €% cos (n — 2k)tdt

and use of a standard integral formula then gives

(9.53) ¢(z) = % g (Z) AR

Defining I(m) by the formula

(9.54) 1(m) = [ " e g,

we use (9.53) and the fact that G(n) = R, and G(0) = Q. to obtain
(96) R. = (3’1)2 > ( )I(n — 2K).

Our next step is to obtain a better formula for I(m). Suppose first that m = 0.
A change of the variable of integration in (9.54) gives

(9.61) I(m) =2|m]| - %" dt.

Using the well known formula
(9.62) [ e—t’/2 dt — a—le—azﬂ _ f t—2e__12/2 dt,
which is easily derived by intergration by parts, gives

(963) I(m) =™ ™ —2|m| | oa
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In case m = 0, an easy evaluation of the right members of (9.54) and (9.63)
shows that (9.63) is still valid. Substituting (9.63) in (9.6) and using (9.42)
gives (9.26). This completes the derivations of the formulas used to obtain
numerical values of C1, -+, Ci and Cy . The tables of the exponential and
probability functions put out by the U.S. National Bureau of Standards were
used.

While our work does not actually prove the result, it indicates very strongly
that the sequence C,, C:, C;,--- converges monotonically to zero and hence
that, in the mean square sense, each one of the distribution functions Fy(z),
Fy(z), Fs(x), - - is more nearly Gaussian than its predecessors. There was a
time when the author rather expected that the sequence H,, H,, H;,--- de-
fined by H, = nC, would also be monotone, but it turns out that this is not so.
In fact

H, .10244 136 H; = .09443 671

9.7
H, = .09412 944 H, = .09432 109

As a check upon the value of H; and upon the relative values of H,, H,, and
H, , the author, at that-time, calculated H, , H. , and H, by a method completely
independent of the calculations of this section and of the theories upon which
they are based. By use of the distribution functions F(x), Fa.(x), Fi(x) and
the formula (1.3) itself, the constants (', , C», and C, were calculated by use of
the Simpson parabolic formula for approximate evaluation of integrals. The
resulting values of H, , H, , and H, were found to agree to 6 decimal places with

the values in (9.7).
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