ON THE IDENTIFIABILITY PROBLEM FOR FUNCTIONS OF FINITE
MARKOV CHAINS
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0. Summary. A stationary sequence {¥Y,:n = 1,2, --- } of random variables
with D values (states) is said to be a function of a finite Markov chain if there
is an integer N = D, an N X N irreducible aperiodic Markov matrix M, a sta-
tionary Markov chain {X,} with transition matrix M, and a function f such
that Y, = f(X.). For any finite sequence s of states of {Y.}, let p(s) =
P{(Y,, ---, Ya) = s}. For any state ¢, let se be the sequence s followed by
e followed by the sequence ¢. For every state ¢, let n(e) be the largest integer
n such that there are finite sequences sy, - -, 8s, %, * - - , tx» such that the matrix
|| p(seet;):1 < 4,5 < n|| is nonsingular.

If {Y,} is a function of a finite Markov chain, then ) n(e) < N. There is a

finite set {s;, -+-, Sy, &, - -+, ty} of finite sequences such that p(s) satisfies
the recurrence relations
(1) p(set) = ,(,-)Z.,, ai(s)p(siet),

where a;(s) either is zero for all s or else is a ratio of determinants involving
only p(seti) and p(s;etx) for f(7) = f(k) = f(4).

If {Y,} has D states and is a function of a Markov chain having N states,
then the entire distribution of {Y,} is determined by the distribution of sequences
of length <2(N — D + 1). For each N and D, a function of a Markov chain
is exhibited which attains this bound.

If there is a Markov chain {X,} with N = D_n(e) states such that {Y,} is
a function of {X,}, then {Y¥,} is said to be a regular function of a Markov chain.
If {Y,} is a regular function of a Markov chain having transition matrix M,
then M = X' AX, where 4 isan N X N matrix withelements a;; = a;(s;f(z))—
defined by (1) above. X = | zi;| is a nonsingular N X N matrix such that
z;; = 0 unless f(¢) = f(j), the first row of each nonzero submatrix along the
diagonal consists of positive numbers, and > = p(sif()). Any N X N
Markov matrix giving the same distribution for {Y,} can be written in this
form, with the same A and with an X having the above properties. Any matrix
of this form which has all elements nonnegative is a Markov matrix giving
the same distribution for { ¥,,}. There are ) _{n(e)}* — N “unidentifiable” param-
eters in the matrix X, and at most N* — D_{n(e)}® “identifiable” parameters,
determined by the distribution of {Y,}, in the matrix A.
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1. Introduction. Suppose a process is known to be a stationary irreducible
aperiodic Markov chain with a finite number of states (for definitions and proper-
ties of such chains, see [2]), but for some reason the states of the process can-
not be directly observed. Suppose the states of the process are partitioned into
groups, and that one can identify the group from which an observation came,
but not which state in the group was observed. The observable process is again
stationary, with a strictly positive stationary distribution, but it is not, in
general, a Markov chain. A given Markov matrix, together with the function
which partitions the states into groups, uniquely determines the distribution
of the observable process. However, for a given function, there is in general
more than one Markov chain which gives rise to the same observable proc-
ess. For this reason, even if the entire distribution of the observable process is
known, the matrix of transition probabilities for the original process cannot be
uniquely determined. The general problem being considered here is the question:
what characteristics of the observable process are needed in order to identify
the class of Markov chains which could give rise to it?

Functions of a finite Markov chain were studied from a different point of view
by Harris [3] under the name ‘‘grouped Markov chains.” For the case of a Markov
matrix having all elements positive, he obtained an expression for the conditional
distributions, P{Y, = €| Yooy = w1, -+ -, Yur = w}, of the observable process,
in terms of a finite set of continuous distributions on [0, 1] whose generating
functions are determined by the originating Markov matrix. He did not, how-
ever, study the identifiability problem. Blackwell and Koopmans [1] showed
that for any function of a finite Markov chain, there is a finite integer J such that
the entire distribution of the function process is determined by the distribution
of observable sequences of length not exceeding J, and obtained, for a Markov
chain with N states, an upper bound of 2N* + 1 for J. They also considered,
and ‘“almost” solved, the identifiability problem for two special cases: (a) the
N states are grouped (1, N — 1), and (b) N = 4 and the grouping is (2, 2).
The methods used in this paper are extensions of the method used for (b) by
Blackwell and Koopmans.

Before proceeding with the investigation, it is necessary to develop some
notation which will be used throughout what follows. {Y,:n = 1, 2, .- - } will
always be a stationary (irreducible aperiodic) sequence of random variables
with a finite number, D, of states, which we assume are the integers 0, 1, - - -,
D — 1. All elements of the stationary distribution for {Y,} are assumed to be
positive. States of {¥,} will be denoted by Greek letters e and u, with or without
subscripts, and letters s and ¢, with or without subscripts, will stand for finite
sequences of states of {¥.}. The sequence “‘s followed by ¢’ will be written “st.”
We will have occasion to refer also to the empty sequence, &, and &'s and s&
will both ‘fepresent the sequence s.

M = ||m;;|| will be an N X N irreducible aperiodic Markov matrix, and
{m;:1 £ ¢ £ N} will be the (unique) stationary distribution associated with M,
allm; > 0. {X,:n = 1, 2, --- } will be a stationary Markov chain with M as
‘matrix of transition probabilities. Let f be a function on {1, 2, --- , N} to
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{0, 1,---, D — 1} and let N. = the number of states in f™"(¢). Let K. =
No 4+ -+ 4+ Ni(Ko = 0). For notational convenience, we assume that f is
nondecreasing; i.e., f (¢) = {K. + 1, ---, K. + NJ.

For any finite sequence s, and any state ¢ of { X}, define

(2> p(8)=P{(Y1,"‘,Yn) =8},
(3) qt(s) = P{(YI; ) Yﬂ) = 8 Xop = i}r
(4) 7’;(8)=P{(Y2,'°',Y,.+1) =8|X1=’L'!.

It will be useful also to define, for any 7, ¢.(&) = m;, and r;(&) = 1. Then
for any s, t, ¢, and u (including s or ¢ = &), it is evident that

(5) p(set) = f(g;e q:i(s)r(t)

and

(6) plseut) = 25 >0 qi(s)miri(t).
f(D)y=¢ f(j)=n

These two equations will be basic in all that follows, and we shall take ad-
vantage of the notational simplification possible by restating them in the form
of matrix equations. For any set of sequences s;, sz, -« -, 8, and any ¢, let
Qc(s1, -+, 8.) be the n X N. matrix whose (7, j)th element is gk, 4;(s:). Let
R(s1, -+, sx) be the N. X n matrix whose (%, j)th element is rx,+;(s;). The
function f induces a partition of M into submatrices M., , where the (7, 7)th
element of M., is mk,+i,x,+;. Finally, let Pc(sy, --+, a3 81, -+, tm) be the
n X m matrix whose (7, j)th element is p(s;et;). Then (5) and (6) become

(7) Pe(sly "'asn;tl; '”’tm)=Q€(sl)”';8n)Re(t1; "'7tm)
and
Pe(sh ey Sasmty, e, wim) = Q(S1, s Sa)MuBu(t, -, tn)

= Pu(516, ** , Sn€5 b1, * 0, tm).

(8)

A Markov chain is characterized by the property that the conditional prob-
ability of the sequence seu, given se, is independent of s. In terms of the functions
p(s), this is p(seu)/p(se) = p(eu)/p(e). In fact, for any sequences s, &,
82, t2, we have

p(s1 et1)p(s1 ebz)

p(s: et1)p(sz et2)

In still other words, the largest square matrix of the form || p(s:et;) || which is
nonsingular is one by one. It is this property which we shall generalize to func-
tions of a Markov chain.

For each state e of a stationary sequence {Y,} of random variables, let n(e)
be the largest integer n such that there are finite sequences s, <+« 8., ti, -+, tn
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of states of {¥,} such that the matrix || p(s:et;):1 < %, j < n|| is nonsingular.
(If no such largest integer exists, let n(e) = «.)
LemMa 1. If {Y.,} is a function of a finite Markov chain, then > _n(e) < N.
Proor. By Equation (7), for any set {s;; t;:1 < ¢ < N. + 1} of finite se-
quences of states of {Y,},

P(si;til £4,j S N+ 1)
= Q(s::1 =4 < N.+ 1)R(t;;1 £j < N+ 1),

and each of the matrices on the right-hand side has rank at most N, ; so the
product is singular. Thus n(e) cannot be larger than N.. Therefore

2n(e) < X N. =N

It is an interesting conjecture that Y n(e) < o is a necessary and sufficient
condition that a stationary (irreducible aperiodic) sequence be a function of a
finite Markov chain. We shall later see evidence which seems to support this
conjecture, but the writer has not been able to complete a proof (or disproof)
of it.

2. Regular Functions. The set of all N X N irreducible aperiodic Markov
matrices may be thought of as a subset of Euclidean N(N — 1) dimensional
space. For a given function f, the set for which >_n(e) < N is a set of dimension
less than N(N — 1), having Lebesgue measure zero in the set of all N X N
Markov matrices. In this sense, the case where Y n(e) = N is the most im-
portant case to investigate. For this reason, and for others to be.mentioned
later, we shall say that {Y,} is a regular function of a Markov chain if there is
a representation of { ¥,,} as a function of a finite Markov chain having N states,
and Y n(e) = N. In the remainder of this section, unless otherwise stated,
we shall assume that {¥,} is a regular function of a Markov chain. Some of
the results of this section are true also for the case Y _n(e) < N, and these will
be pointed out in the next section.

Let s,:--, sy, ti,--+, tv be a set of sequences such that for each
¢ P.(s:; t;:f(2) = f(j) = e€) is nonsingular. Then for each ¢, the rows
of Q.(s::f(7) = €) form a basis for Euclidean N.-space. In order to obtain a
basis which is associated with sequences of minimum length, it is convenient
to order the set of finite sequences (including &, considered as a sequence of
length zero) in such a way that s follows ¢ if length (s) > length (¢), and (say)
numerical order for sequences of the same length. Then we may start with Q.(&)
and proceed to consider each sequence in order until we have found a basis. In
this manner we obtain a set {sf:1 < ¢ < N} with the property that for every s,

(10) Qu(s) = f(g: ai(8)Qe(s}),

) =€

(9)

where a;(s) = 0 if length (s) < length (sf), and no set {s:-} satisfying (10) has
maximum length (s{) < maximum length (s}).
A similar procedure will obtain a set {¢;:1 < j < N} such that for every ¢,
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(11) R(t) = 3 bi(ORL),

7 (Gy=e
with corresponding properties for the b;’s and £;’s. We shall assume from now
on that the sequences have been chosen in the first place so that s; = st ti=1tr,
and shall drop the asterisk in the notation.

LemMa 2. If { Y.} has D states and is a regular function of a Markov chain with
N states, and f {s} and {t;} are the sets of sequences such that || p(s:et;) || s non-
stngular, chosen as in (10) and (11), then maximum length (s;) < N — D and
maximum length (t;) < N — D.

Proor: Let m be any integer. Suppose for all s such that length (s) < m,
and all ¢, that Q.(s) = 2.a.(s)Q.(s:), where length (s;) < m. Then for all s
with length (s) < m and all g,

Q,,(Se) = Qe(s)Meu = Zai(s)Qe(si)Mep = Zai(s)Q,,(sie).
Now length (s;e) < m; s0 Qu(sie) = > xax(s:€)Qu(si), and therefore
Qu(se) = 2.2 ai(s)ar(sie)Qu(s) = 2oar(se)Qu(sh).

That is, for all s such that length (s) < m + 1, andall e, Q(s) = D> ai(8)Qc(s:),
where length (s;) < m. Then by induction we obtain that the result holds for
all s and all ¢, with the maximum length of the sequences s; being less than m.

Therefore in the set {s;:1 < ¢ < N} there must be at least one sequence of
each length up to the maximum length. For if any length were skipped, then
so would be all following. Since there are N — D sequences not & in the set,
the maximum length for s; is not greater than N — D. A similar argument holds
for sequences ?; .

TureoreM 1. If {Y,} has D states and is a regular function of a Markov chain
having N = Y n(e) states, then the entire distribution of {Y.} is determined by
the set of functions {p(s): length (s) < 2(N — D + 1)}.

Proor. Multiplying both sides of equation (10) by R.(t), we obtain for every
s, € and ¢,

(12) p(set) = ﬂ;e a;(8)p(siet).

Setting ¢ successively equal to ¢; for each j such that f(j) = ¢, we get a set of
N. independent linear equations in the N, functions a;(s). By Cramer’s rule,
we can solve the system of equations, obtaining a;(s) as a ratio of determinants
which involve only p(sjetr) and p(setx) for f(j) = f(k) = f(i) = e

Let J = maximum length (sif(2)f(j)t;). Then (12) expresses p(s) for all s
of length greater than J in terms of the probabilities of sequences of length
< length (s), and by repeated use, in terms of the probabilities of sequences of
length < J. But by lemma 2, J < 2(N — D 4 1). This completes the proof.

We may obtain the same result, and another recurrence relation, by multi-
plying both sides of (11) by Q.(s), to get

(13) p(set) = m)Zm bi(t)p(set;).
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The calculations in Lemma 2 indicate that a process which achieves the upper
bound might be obtained by choosing one sequence s; of each length from 1 to
N — D, and similarly for ¢; . By choosing a function which is one to one on
D — 1 states and which groups the remaining N — D + 1 states together, we
obtain for each N and D a pair (f, M) which attains the upper bound.

Letf(s) =0if 1<{<N—-D+1
f@)=i— (N—-D+1)fN—-—D+2=:7=N.
Let 0 < a1 < a < -+ < ayppn <1l
Letmyj =0if1 <4, j<N —D+ land? # j,
mij=0;fl1=<4j<N-—-—D-+1lands =y,
1—-a)/(D—-1)ifN—-—D+1<i<Nandl £<j<N -
D+1,
mij=((1—a;)(D—-1)if1<{=N—-D+1landN—-—D+1<j=N,

m;j

m”=2(D—1)—N_IE-DaI_-I-I()IZ-I-“‘+aN_D+lifN_D+1<1',
J=N.
It is easily verified that M = || m;| is a doubly stochastic Markov matrix.

If {X,} is a stationary Markov chain having transition matrix M, then {f(X,)}
is a function of a Markov chain for which we may choose s; = t; = &, 8, = t, = 0,

8 = 84 = 00,--+, Sa—py1 = lun_pta = a sequence of N — D 0’s, sy—p =
‘tN—D= s e = sN = tN = g'
Then if Py = Po(31 y "y SN—D+1, b, -, tN_D+1), then

|P| = N[ JI  (a:i—apl
1<i<jEN—D+2
‘Since all a; are distinct, | Po| 5 0, and therefore the distribution of {f(X,)} is
not determined unless the probability of a sequence of 2(N — D + 1) 0’s is
known.

We shall see in Section 3 that Theorem 1 is true in general for a function of a
finite Markov chain, with N replaced by D_n(e). At this point, then, we have a
partial answer to our question. The class of Markov matrices which could gen-
erate the observable process is determined by the set of functions p(s) for s
having length < 2(N — D + 1). More precisely, following Blackwell and
Koopmans [1], let us say that a finite set S of functions p; defined on the set of
N X N irreducible aperiodic Markov matrices is a complete set of invariants
relative to a function f if and only if p;(M1) = p:(M,) for all p; in S when and
only when M; and M, give the same distribution for {f(X,)}. A complete set of
invariants is said to be minimal if no proper subset is complete. Then the result
of Theorem 1 (as extended in Section 3) is that the set of functions
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{p(s):length (s) < 2(N — D + 1)} is a complete set of invariants relative to
any function taking N states into D states. It is not a minimal complete set
relative to any particular function, as some of the probabilities listed are deter-
mined by others.

However, if for some ¢, n(e) < N., there may be a pair (f/, M’) such that
M isa Don(e) X 2n(e) Markov matrix, and {Y,} has the same distribution
as {f(X.)}. Then a complete set of invariants relative to f’ could be found which
contained fewer functions than any complete set relative to f. In this case,
(f’, M') would seem to be a more natural representation than (f, M). This fur-
nishes a second reason for looking at regular functions of a Markov chain.

An example used in another connection by Blackwell and Koopmans furnishes
a good illustration. Let

8
Nl o

M =

Do DO R
<
L
RS

N
(S

and f(1) = 0, f(2) = f(3) = 1. {p(1), p(11), p(111), p(1111)} is a minimal
complete set of invariants relative to f. However, for the particular matrix M,
{Y,} is a Markov chain, and its distribution is determined by {p(1), p(11)},
which is a minimal complete set relative to f':f'(1) = 0, f/(2) = 1, with

1
M =

(SN

Nl )

being the only 2 X 2 matrix which gives the proper distribution for {¥,}. The
parameters z, y, and z are all unidentifiable by observation of the process {Y.}.

Next we shall obtain a parametric representation of the equivalence clags of
all N X N Markov matrices which give the same distribution for a given regular
function of a Markov chain. In the process, we shall need to look more closely
at individual sequences s; and ¢; and functions @; than our present notation
conveniently allows. So if z is any of these symbols, let z.; = zg, .;; that is,
Ze; 18 the 7th z associated with the state e. Also, if W = || w;; || isany N X N matrix,
“let W, be the n(e) X n(p) submatrix for which f(z) = ¢, f(j) = u.

Let A be the N X N matrix whose (7, j)th element is a;(s;f(2)), where a;(s)
is the function defined by (12). Then as a consequence of (12), for every e,
u, and ¢,

Pu(su, 5 Suntw 3 ) = P(sup, =+, Sunos; t)

(14)
= AuPc(sa, * , Sen(e) 5 t).
By induction, then, if ¢ = e - - - €€,

(15) Pu(sur, * ) Sunwy 3 1) = AnelAelﬁz toe Aenﬁpe(sﬂ sy Sence) 3 ).

Using these facts, we may now prove
THEOREM 2. Let {Y,} be a regular function of a Markov chain {X,} with N X N
transition matrix M. Let A be the N X N matrix whose (%, j)th element is a;(s:f(2)).
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It

Then there is a nonsingular N X N matriz X such that (i) z;; = O unless f(7)
F(5), (ii) the first row of each X .. consists of strictly positive numbers, (iii) Y xi; =
p(sif(2)), and M = X'AX. Any matrix equivalent to M can be written in
this form with the same A, and for any nonsingular X satisfying (i), (ii), and
(iii) which makes all elements of X '4X nonnegative, X '4X is a Markov
matrix equivalent to M.

Proor. Let P, @, and R be the N X N matrices whose (7, j)th elements are
respectively p(s:et;), ¢;(s:), and ri(¢;) if f(2) = f(j) = ¢, and zero if f(z) #= f(7).
Let C be the N X N matrix whose (¢, j)th element is p(s;f(2)f(7)t;). Then by
(14) C = AP,and by (8), C = QUMR.So M = Q'APR™ = Q'AQ. Thus Q
satisfies the requirements on X.

Any matrix M’ equivalent to M defines a matrix ' which satisfies the re-
quirements in the same fashion. Since A is completely determined by the dis-
tribution of {Y,}, it is not changed by substituting for M a matrix
equivalent to M.

Now let X be a nonsingular N X N matrix satisfying (i), (ii) and (iii) such
that all elements of X '4X are nonnegative. Define M = || m;;| = X '4X.
We wish to show that M is a Markov matrix with a unique all-positive stationary
distribution, and that (f, M) generates the process {Y.,}.

N D—1
2omi =2, 2, myri{Q),
J=1 u=0 f(j)=n

and by (iii),
ZMeuRu(g) = ZX;?A;,,X,,,,R“(%) = X::ZAWIJI‘(SIA vty Sunaw 3 )
u u u

= Xe_eIPe(sel y s Sene 3 F) = R().

Therefore D ; m;; = 1 for every 4; so M is a Markov matrix.

We next show that the collection of positive numbgrs in the first row of each
of the X, form a stationary distribution for M. Let Q.(&) = {first row of X. .
Now

QD) My = QD)X AuX,
=1{1,0, -+ ,04,X,,
= {au(e), ** , Oun (€)} X -
And
Tauo = {21
Therefore

ZQ:(Q)MW = {1’ 0,---, O}qu
= Qu).
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Now by (ii), every element of Q:( &) is positive; so this is indeed the stationary
distribution associated with M.

Finally, we show that if {X,} is a stationary Markov chain with transition
matrix M, then {f(X,)} has the same distribution as {Y,}. Let s = uees - -+ €ne
be any finite sequence of integers from {0, 1, --- , D — 1}. Then

Prob{(f(X1), -+ , f(Xn42)) = 8} = Qu(&)MuMeey -+ Mo, R( D)
= QD) Xty Acres - AqeXR(D)
= QD) XmdperAerer  AeyePe(sa, -+,
Sence) 3 D)
{1, 0,--- ,O}P,,(s,.l, Cee ) Sunw)

€162+ * €n€)

p(peae - - - €ne).

This completes the proof.

The “identifiable” parameters of M are contained in the matrix 4, and the
free entries in X are ‘“unidentifiable,” since they may be changed without chang-
ing the distribution of {¥,}. Since the only real restrictions on elements of X,
are that each row have the proper sum, there are Y n(e){n(e) — 1} =
> {n(e)}’ — N “unidentifiable” parameters associated with M. In general,
there are N(N — 1) free parameters in a Markov matrix; so there are in general
N® — Y{n(e)}® “identifiable” parameters associated with M.

Since the distribution of {Y,} determines and is determined by the matrix 4,
any representation of {Y,} by (f’, M’), where M’ is larger than M, would have
the same number of “identifiable” parameters and would simply include more
“unidentifiable” parameters. Also no representation (f”, M”) with M” smaller
than M is possible. So the representation (f, X *AX) would seem to be a com-
plete solution of the identifiability problem for regular functions of a Markov
chain.

3. General Case and Unsolved Problems. If {Y,} is a function of a finite
Markov chain and D_n(e) < N, it is still possible that a representation can be
found for {¥,} as a function of a Markov chain having D _n(e) states. In this
case, all the results of Section 2 apply. The special case still remaining, that
{Y.} is a function of a finite Markov chain, but no representation can be given
as a function of a chain having > _n(e) states, may be empty. At this time it is
still an open question whether or not every function of a finite Markov chain
is a regular function of a Markov chain. However, even if the case is not empty,
a modified version of Theorem 1 still holds. The computations in proof of
Theorem 2 prove the following:

Lemma 3. If {Y. 4s a stationary sequence of random wvariables with
values 0,1, --- , D — 1, with p(s) > O for each ¢, and with Y _n(e) = N’ < o,
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and if f' is the function carrying the first n(0) integers into 0, next n(1) integers
into 1,, elc., then there is an N’ X N’ matrix M’ of real numbers, and a
set {m;:1 < 7 < N'} of positive real numbers such that

(i) Zj m::i = Zj mJ, =1,
(i) 2imimi; = m;, and
(iii) for any sequences = e1e2 - - - €,
p(s) = Dimimiyey - mi_iif'(4) = &, 1 Sk < n}.

The fact that p(s) satisfies a recurrence relation of the type (1) follows from
the fact that for every ¢, some determinant | Pe(Se1, * - , Sence) 5ty = * 5 fenco)) |
is nonzero, while for every s and ¢, |P(s, Se1, *** , Sente) } b ter, * ** 5 tencoy)| = O.
Then the matrix A defined by this recurrence relation, together with any X
satisfying (i), (ii), and (iii) of Theorem 2 generates a matrix M’'. The question
of whether or not there is in this class of “pseudo-Markov’’ matrices one matrix
with all elements nonnegative is the question of whether or not Y n(e) < o
characterizes a regular function .of a Markov chain. If n(0) = 2, n(e) = 1 for
0 < e < D, then it can be shown that there is indeed such a nonnegative matrix.
However, the writer has not yet been able to extend this result to the general
case.

But for any M’ having the properties of Lemma 3, we may define recursively,

with 7i(&) = 1, ¢i(&) = mi,
rie) = X (mini(t):f'(G) = ¢,
gi(se) = 2 {gi(9)misif () = ¢,
and note that for every s, €, and ¢,
plst) = 3 ai(o)ri(t).

All of the computations carried out in Lemma 2 and Theorem 1 go through for
the functions ¢’ and 7/, and Theorem 1 remains true with f replaced by f’ and

N by D n(e).
4. Acknowledgement. The author wishes to express his deep appreciation to

Professor David Blackwell for providing the idea that started this work and
for his guidance and encouragement while it was being done.

REFERENCES

{1] Davip BrackwELL AND L. Koormans, “On the identifiability problem for functions
of finite Markov chains,”” Ann. Math. Stat., Vol. 28 (1957), pp. 1011-1015.

[2] WiLLiaM FELLER, An Introduction to Probability Theory and its Applications, Vol. I
(second edition), John Wiley & Sons, New York, 1957.

[3] T. E. Harri1s, “On Chains of Infinite Order,”’ Pacific J. Math., Vol. 5 (1955), pp. 707-724.



