ON THE LAWS OF CAUCHY AND GAUSS

By R. G. Lana'

The Catholic Unaversity of America

1. Introduction and summary. Let z and y be two independent normal variates
each distributed with zero mean and a common variance; it is then well-known
that the quotient z/y follows the Cauchy law distributed symmetrically about
the origin. Now the question that naturally arises is whether we can obtain a
characterization of the normal distribution by this property of the quotient. This
converse problem can be more precisely formulated as follows:

Let x and y be two independently and identically distributed random variables
having a common distribution function F(z). Let the quotient w = z/y follow
the Cauchy law distributed symmetrically about the origin w = 0. Then the
question is whether F(x) is normal.

But this converse is not true in general. The author [1] has recently con-
structed a very simple example of a non-normal distribution where the quotient
z/y follows the Cauchy law. Steck [7] has also given some examples of non-
normal distributions with this property of the quotient.”

In the present paper we shall first derive some interesting general properties
possessed by the class of distribution laws F(z) [Section 2]. In Section 3 we deduce
a characterization of the normal distribution under some conditions on the dis-
tribution function F(z). Finally in Section 4 we construct an example of a non-
normal distribution function F(z) having finite moments of all orders where the
quotient z/y follows the Cauchy law. The method of proof is essentially based
on the applications of Fourier transforms of distribution functions. For the proof
of Theorem 3.1 we require somewhat deeper results in the theory of analytic
functions.

2. Some general properties of F(x). We shall here discuss some general proper-
ties of the class of distribution laws F(z). We first prove a lemma which is instru-
mental in the proofs of the subsequent results.

Lemma 2.1. Let x and y be two independently and identically distributed proper
random variables having a common distribution function F(x) which is continuous
at the origin x = 0. Let the quotient w = x/y have a distribution function G(w)
symmetric about the origin. Then F(x) is also symmetric about the origin.

Proor. As usual we assume that each of the distribution functions F(x) and

Received March 14, 1958; revised March 3, 1959.

! This work was supported by the National Science Foundation through grant NSF-G-
4220.

2 Note added in proof: While this paper was in press, the author learned that some ex-
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G(w) is everywhere continuous to the right. Then we have the following nota-
tions:
F(a) = Prob (z £ a) G(a) = Prob (w =< a)
F(a —0) = Prob (x < a) G(a — 0) = Prob (w < a).

We also note that the origin = 0 must be a continuity point of F(x), as other-
wise the quotient w assumes the indeterminate value 0/0 with a positive prob-
ability. Now for w > 0 we have

G(w) — G(0) = Prob [0‘< g = w]

= Prob [0 < z < wy;y > 0]
+ Prob [wy £z < 0;y < 0]

- [ " F(wy) — F(0)).dF(y)
(2.1) ’

+ f_: [F(0) — F(wy — 0)] dF (y)
_ fo " P(wy) — F(0)] dF(y)

+ fow [F(—wy — 0) — F(0)] dF(—y — 0).

Similarly we can show that for any w > 0

-

X
G0) —G(—w —0) = Probl:— w = ” < O]
(22) = [ ~ F(—uy - 01 aF ()

+ [ " 1F(0) — Flwy)l dF(—y — 0).
0

Since G(w) is symmetric about the origin w = 0, we have the relation
(2.3) G(w) — G(0) = G(0) — G(—w — 0)

holding for all w.
Then using (2.1) and (2.2) together, we get from (2.3) the relation

[ [F(wy) + F(—uwy — 0) — 2F(0)] dF (y)
(24) - .
n fo [F(wy) + F(—wy — 0) — 2F(0)] dF(—y — 0) = 0

holding for all w > 0.
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Substituting
H(wy) = F(wy) + F(—wy — 0) — 2F(0)

in (2.4), we obtain
(25) fo " H(wy) dH(y) = 0

holding for all w > 0. Here H(y) is a function of boynded variation. We now
use the transformation w = e*andy = ¢(—0 S u < ©; —» < v < «) and
denote :

H(y) = H(&) = Hi(v) and H(wy) = H(e"™) = Hy(u + ).
Here we note that Hy(v) is also a function of bounded variation. Thus (2.5)
reduces to

(26) _ f_ : Hy(u + v) dHi(v) = 0

holding for all u(—o < u < + ). From (2.6) we see easily that the relation

(27) [:e"“‘ d U: Hi(u + ) dHl(v):' =0

a

holds identically for all'real . Let
(28) W) = [ am)

denote the Fourier transform of Hi(v) which is a function of bounded vaiation.
Then using the theorem of Fourier transforms of convolutions of functions of
bounded variation we get from (2.7)

YW (—t) = |¢@) " = 0;
that is, -
(2.9) [e(t)| =0

holding identically for all real ¢, where ¥(t) is defined in (2.8). Finally from the
uniqueness property of Fourier transforms of functions of bounded variation, it
follows immediately from (2.9) that Hi(v) is a constant almost everywhere.
Hence '

(2.10) H(y) = F(y) + F(—y — 0) — 2F(0) = ¢, a.e.

Next substituting ¥ = 0in (2.10) and noting that the origin y = 0 is a continuity
point of F(y), we get ¢ = 0 and thus (2.10) reduces to

(2.11) F(y) + F(—y — 0) = 2F(0).
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Finally we note F(—») = 0 and F(4+ =) = 1 and obtain from (2.11) that
F(0) = %. Thus we have

(2.12) Fly) = 1= F(=y —0),

which completes the proof.

LeMMmA 2.2. Let x and y be two independently and identically distributed random
variables having a common distribution function F(x). Let the quotient w = xz/y
follow the Cauchy law distributed symmetrically about the origin w = 0. Then F(x)
18 absolutely continuous and has a continuous probability density funciton f(x) =
F'(z) > 0.

Proor. As a direct consequence of Lemma, 2.1 it follows that F'(2) is also sym-
metric about the origin 2 = 0. Let Fo(x) denote the distribution function of
| z |. Then we can verify easily that

o z<0
(2.13)  Fo(x) = {F(x) — FP(—2z—0)=2F(z) —1 for z=0.

Thus we note that in this case the distribution functions of = and w are uniquely
determined by the distribution functions of | z | and | w | respectively. We can
easily verify after elementary integration that the characteristic function of the
distribution of In | w | is given by

E(eitlnlwl) = ‘ 1 .
™
cosh <§ t)

Then noting that In |w | = In |2 | — In | y | we get finally the relation

1

e(t)o(—t) = ————
(2.14) cosh (g t)

holding for all real ¢, where ¢(¢) denotes the characteristic function of the dis-
tribution of In | z |. The relation (2.14) has also been derived independently by
Steck [7]. From (2.14) we get at once

1

(2.15) lo(t) | = WZ

and then verify easily that [Ze |¢(t) | dt < «; that is, the characteristic function
¢(t) is absolutely integrable. Then using the well-known theorem ([2], p. 188), we
deduce easily that the distribution function of In |z | is absolutely continuous
and has a continuous probability density function. Thus it follows as an im-
mediate consequence that | z | has an absolutely continuous distribution func-
tion. Finally from the relation (2.13) we see easily that F(x) is also absolutely
continuous and has a continuous probability density function.
We are now in a position to prove the following theorem.
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THrEOREM 2.1. Let x and y be two independently and identically distributed random
variables having a common distribution function F(x). Let the quotient w = z/y
Sollow the Cauchy law distributed symmetrically about the origin w = 0. Then F(x)
has the following general properties:

(1) <t is symmetric about the origin x = 0;

(2) 1t 7s absolutely continuous and has a conttnuous probability density function

I(z) = F'(z) > 0;
(3) the random variable x has an unbounded range;
(4) the probability density function f(x) satisfies the integral equation

Co

(2.16) _/: f(@)f(uz)z do = TTe

holding for all u, where co s a constant.

Proor. The properties (1) and (2) follow as direct consequences of Lemmas
2.1 and 2.2. For the proof of property (3) we proceed as follows:

Let us suppose that the random variable z has a bounded range, that is, F(x)
is contained in a finite interval (—a, +a) of the z-axis. We introduce the polar
transformation £ = r cos # and y = r sin 8 and deduce easily that the joint prob-
ability density function of r and 6 has the form

(2.17) r f(r cos 8)f(r sin 6).

We now integrate (2.17) with respect to r and obtain the probability density
function of ¢ as:

f(0) = jo.a/mof(r cos 0)f(r sin 8)r dr for 060 < n/4

(2'18) a/8inf
f2(0) = fo f(rcos 0)f(r sin 0)rdr for v/4 <0 £ w/2

Finally substituting cot 6 = z/y we get at once from (2.18) that if the random
variable z has a bounded range (—a, +a) the form of the probability density
function of w = z/y in the range (0 < w =< 1) is different from that in the range
(1 £ w £ «). The contradiction thus obtained leads to the proof of (3).

For the proof of (4) we introduce as usual the polar transformation z = r cos 6
and y = r sin 6 and integrate (2.17) with respect to r over the range (0, ). We
further note that § = arc cot z/y has a uniform distribution. Thus the equation
for the probability density function of 6 is given by

(2.19) [D f(r cos 8)f(r sin 8)r dr = ¢

where ¢ is a constant. Then substituting £ = r cos 6 and ¥ = tan 6 in (2.19) we
get (2.16). Thus the problem of determining the entire class of distribution laws
F(z) is equivalent to that of complete enumeration of the solutions of the inte-
gral equation (2.16). This problem is very difficult and still remains to be solved.
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3. A characterization of the normal law. We shall now derive a characteriza-
tion of the normal distribution under some additional conditions on the distri-
bution function F(z). For this purpose, we give first some analytical lemmas
which are also of independent interest.

Lemma 3.1. Let ®(z) be a decomposable characteristic function which is regular
(analytic) in a strip —a < Im z < +a (a > 0) of the complex z-plane. Let ®;(2)
be a factor of ®(z). Then the characteristic function ®,(z) is also regular at least in
the strip —a < Im z < +a.

This lemma on the factorization of analytic characteristic functions is due to
Raikov [5]. A proof of this lemma is presented by Loéve ([2], p. 213).

LemMma 3.2. Let ®(z) be a decomposable regular (analytic) characteristic function
and ®,(z) a factor of ®(z). Let ®(—1v) exist for some v (v # 0 real). Then for this
v, ®1(—1) must also exist. Further, there always exist two finite real mumbers
K > 0and a = 0 not depending on v such that the inequality

(3.1) & (—w) < Ke®'d(—1iv)

8 satisfied.

This lemma is also due to Raikov [5]. A proof of this lemma is presented by
Logve ([2], p. 214).

LemMma 3.3. Under the same conditions as in Lemma 3.2, let z = t + 1v (t and v
both real). Then we have the inequality

(3.2) | #1(—2) | = Ke""'®(—1v).

The proof follows at once from (3.1) and the well-known property of the positive
definite functions

max | & (¢t + w) | < & (w), (¢t and v both real).
—0= ¢ S+
LemMA 3.4. Let f(x) be a continuous non-negative function of the real variable x.
Let the integral [¢ 2°f(x) dx exist for all real v > 0. Then the integral

I(z) = [ﬂ 2 (z) dx

as a function of the complex variable z is regular (analytic) in the upper half plane
Imz > 0. Conversely if the function I(z) s regular in the upper half plane Imz > 0,
then the integral [7 x°f(x) dx exists for all real v > 0.

Proor. We first note that 7(z) is uniformly convergent in every closed domain
of the half plane Im z > 0. Then using the well known theorems on regular func-
tions ([6], pp. 107, 116) we derive that I(z) is regular in the half plane Im z > 0.
The proof of the converse statement is obvious.

From Lemma 3.4, it is also easy to see that if the integral [¢ 2°f(z) dx exists
for all v > 0, then the integral [§ *f(z) dz, (2 complex) is regular in the lower
half plane Im z < 0.

Lemma 3.5. Under the same conditions as in Theorem 2.1, let the distribution law



LAWS OF CAUCHY AND GAUSS 1171

F(x) have finite moments of all orders. Let o(t) = E(e™') denote the charac-
teristic function of the distribution of In |  |. Then o(2) = E(e™™') as a function
of the complex variable z is regular in the region Im z < 1.

Proor. Since F(z) has finite moments of all orders, the integral [¢ 2’f(x) dx
is convergent for all v > 0, where f(z) is the probability density function. We
further note that f(x) is symmetric about the origin = 0. Then applying Lemma
3.4, we get easily that

(33) o(z) = B(e™™) = 2 fo " 5(2) da

is regular at least in the lower half plane Im z < 0. )

Next we note that the characteristic function 1/cosh [(x/2)f] can be con-
tinued in the complex z-plane since 1/cosh [(r/2)z] is regular in the strip | Im z | <
1. Then applying Lemma 3.1 to the relation (2.14), we deduce at once that ¢(#)
can also be continued in the complex z-plane and further ¢(z) is also regular at
least in the strip | Im 2| < 1. Thus combining the two results we conclude that
¢(2) is regular in the region Im z < 1. Similarly we see that ¢(—z) is regular in
the region Imz > —1.

We are now in a position to prove the following theorem.

TuaeoreM 3.1. In addition to the conditions of Theorem 2.1, if the following two
conditions are satisfied:

(1) F(x) has finite moments of all orders,

(2) ¢(2) = E(e™") has no zeros in its region of regularity (z complex), then
F(x) 1s normal.

We must note in this connection that the condition (2) is essential for the
theorem. In the next section we shall give an example to show that the theorem is
not true if the condition (2) is not satisfied.

Proor. We examine more closely the equation

1

o(2)p(—2) = ———~
(34) cosh (—;—r z)

for complex values of z.

For further investigation, we have to study the analytical behaviour of the
function cosh [(7/2)2] in the complex z-plane. We note that cosh [(7/2)2] is an
entire function of order unity having simple zeros at the points z = +4(2k + 1),
k=0,1,2, --- on the imaginary axis. Then applying the decomposition theorem
([6], p. 299), we have the canonical represeniation of cosh [(7/2)2] as:

0 2
(35) cosh (’_’ 2) =11 (1 + E_z)
2 k=0 [+73
where ax = 2k 4+ 1;k =0, 1,2, --- . It is also easy to verify that the condition

D e 1/ai < o is satisfied.
From the conditions of the theorem 3.1 and lemma 3.5 it follows that the
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characteristic function ¢(z) is regular in the region Im z < 1 and has no zeros in
this region. We now factorize ¢(z) in the following manner:

(36) o) = o= (L5E) o).

From the elementary properties of the Gamma function ([6], p. 313) it can be
verified easily that T'((1 + 42)/2) is a meromorphic function which is regular
everywhere in the region Im z < 1, real on the imaginary axis and has no zeros
in its region of regularity. We also note that its reciprocal 1/T'((1 + 42)/2) is
an entire function of order unity having simple zeros at the points z = #(2k + 1),
k=0,1,2, --- all located on the imaginary axis ([6], p. 415). Hence using the
factorization theorem of Hadamard ([6], p. 332) we get

'\/1—!' _ ipz < ( z)-zl'iak
(37) ——<1+iz>—e I -2)e
T 2

where p # Oreal; o = 2k + 1,k = 0,1, 2, - - - . Thus the function 6(2) intro-
duced in (3.6) must also be regular at least in the region Imz < 1, real on the
imaginary axis and without any zeros. From (3.6) we get

68 p@e(-2) =L (LEE) r(15E) - aw-ac-o).

Again it is easy to verify from (3.5) and (3.7)
1+ 22 1 —az\ _ T
(39) r (_2_") ' ( p ) B (,r ) '
cosh 572

Hence using (3.8) and (3.9) we get easily from (3.4) that
(3.10) 0(2)0(—z) =

holding for complex values of z. But we note that 6(—z) is regular at least in
the region Im z > — 1 and has no zeros inits region of regularity. Hence 1/6( —z)
is also regular at least in the region Im z > —1 and without any zeros in this
region. Then using the relation (3.10) it follows easily that 6(z) is regular every-
where throughout the complex plane, that is, it is an entire function. We note
further that 8(z) has no zeros in the complex plane.

We next prove that the order of the entire function 6(z) cannot exceed unity.
We apply the inequality (3.2) to the relation (3.4) and using the expression for
¢(2) in (3.6), we get after a little rearrangement

(3.11) |0(z)lcos(> KA/7- —T—;l—z;—‘ K+/x- ‘—f:m—
HC S I C ]

where z = ¢t 4+ @ (¢ and v both real).
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But the right hand side of (3.11) is an entire function of order unity. Hence
from (3.11) it follows that the order of the entire function 6(z) cannot exceed
unity. Again we have already proved that 8(z) has no zeros throughout the com-
plex plane. Hence using the factorization theorem of Hadamard, we get 6(z) =
¢”. Since 6(z) is real on the imaginary axis we get 6(z) = ¢** where a is real.
Thus we obtain from (3.6)

1 - ’L'Z —iaz
(3.12) (0(—'3) = -\7: T (T) e .
Next we substitute z = w (v > 0 real) in (3.12) and get
o) ® ) - 1 14+ 9\ a»
(3.13) o(—i) = 2[0 2f(z) dz \/_r( . )e .

Since the distribution of z is symmetric about the origin, all the moments of
odd order are equal to zero and a moment of the even order 2k is given by

(3.14) pok = f f(z) dzx = 2f 22 (z) dz.
) 0
Finally substituting v = 2k (k a positive integer) in (3.13) we have
2ak (2k)! 2k
(3.15) \/_ Tk + L)e™ = WToF ©

where ¢ = ¢%/4/2.

The proof of theorem (3.1) follows at once from the fact that the moments in

(3.15) determine uniquely the normal distribution with mean zero and variance
2
o.

4. An example. The non-normal distribution functions constructed in [1], [7]
have moments only up to a certain finite order. Here we give an example of a
non-normal distribution having finite moments of all orders. We shall now con-
struct a characteristic function ¢(z) which satisfies the basic equation (3.4), is
regular in the region Im z < 1, but having zeros in its region of regularity so that
the condition (2) of Theorem 3.1 is violated. We give first two lemmas.

LemMa 4.1, Let
(=09
-6

wherey = a + 18; ¥ = a — 1B and a > 0, 8 > 0 both real. Then &(t) is always
a characteristic function whenever the relation 8 = 24/2 « is satisfied. The proof
follows from a more general result on rational characteristic functions ([4],
p. 721).

LEmMmA 4.2. Let Q(2) be an entire function of order unity having only purely
imaginary zeros. Then its reciprocal 1/Q(z) is always a characteristic function.

(4.1)
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The proof follows from the result ([3], p. 140).
Next we define the quantities

ar =2k + 1 k=0,1,2,--N,N+1--- o
(4.2) Br 2 22 k=012---N (N >0)

i = o + 1 k=012 ---N

Ve = o — P k=012 ---N

and construct the function ¢(z) as:
" (1 + f—)(l + z—z—) o .
e(2) = ]I = =

(43) =i (1 _ _z_)(l _ _z_)(l _ _Z_> gl k=];vI~a-1 (1 _ _i) g1k
Toy, Yk 7 Tay

= Pi(z)-Py(2).

From Lemma 4.1 it follows that P;(z) is a characteristic function, while we get
as an immediate consequence of Lemma 4.2 that P,(z) is also a characteristic
function. Hence ¢(z) in (4.3) is a characteristic function. It is also easy to verify
that ¢(2) is regular in the region Im z < 1 and has simple zeros at the points
2= —tox £ B (k=0,1,2, --- N) inside the region where oy and B are defined
in (4.2). We also see easily that ¢(z) satisfies the basic equation (3.4). Then
we take ¢(2) in (4.3) as the characteristic function of the distribution of In | z |
and verify at once that the corresponding distribution function F(z) has moments
of all orders, but is not normal and the quotient z/y follows the Cauchy law.

In conclusion the author wishes to express his thanks to Professor Eugene
Lukacs for some helpful comments.
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