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1. Summary. Extension theorems of Tietze and Hahn-Banach play an im-
portant part in functional analysis. It seems reasonable to deal with similar
questions for random transforms. In the present paper some measurability prob-
lems arising in connection with this probabilistic generalization are solved.

2. Introduction. First of all we shall introduce some convenient notions, defini-
tions of which follow those given in [1].

Let (2, &) and (Z, 8) be two measurable spaces and U a mapping of the
space Q into the space Z so that the inclusion

{{o:U(w)eB}:Be3} C S

holds. Then the mapping U will be called a generalized random variable, or,
more precisely, a generalized random variable with values in the space (Z, 3).
If (2, ©) and (Z, 3) are two measurable spaces, X an arbitrary non-empty
set and T a mapping of the Cartesian product @ X X into the space Z satisfying
the condition
{{wo:T(w,z)eBlizeX,Be3} C &,

then we shall speak about a random transform, or, more precisely, about a
random transform of the Cartesian product @ X X into the space (Z, 3).

Let us remark that in case Z is a metric space, we usually choose the o-algebra
B as the class of all Borel subsets of the space Z. Under this additional agree-
ment about the o-algebra 3, a number of theorems and criteria have been stated
in [1]. For the purposes of the present paper Criterion 6 is of most importance:

If Z is a separable Banach space then a mapping U is a generalized random
variable if, and only if, for every bounded linear functional f from a subset A
of the first adjoint Banach space Z*, where the subset A is total on the whole
Banach space Z, the compound mapping f(U) is a real-valued random variable.

Some other definitions of a generalized random variable (or of a random
element) have been given by other authors. Thus, for instance, Mourier [2]
defines a random element only in the case Z is a Banach space in the following
way: a mapping U is a random element if for every bounded linear functional f
from the first adjoint space Z* the compound mapping f(U) is a real-valued
random variable. Though for separable Banach spaces the definition of Mourier
and the one of ours coincide, for arbitrary Banach spaces they differ. The defini-
tion of Mourier enables one to prove that the sum of random elements is again
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CONTINUOUS RANDOM TRANSFORMS 1153

a random element, while for generalized random variables this statement need
not hold as shown by Nedoma in [3]. On the other hand generalized random
variables possess the important property that each compound mapping =(U)
formed by means of a Borel measurable mapping 7 (of the measurable space
(Z, 8) into another measurable space (¥, 9)) and a generalized random variable
U is a generalized random variable (with values in the measurable space (Y, 9)).

Bharucha-Reid [4] follows essentially the definition of Mourier, provided his
random elements have values in Orlicz spaces.

The conception of Kolmogoroff and Prochorow [5] is a generalization of the
notion of a stochastic process, while Dubins [6] defines a generalized random
variable as a homomorphism of some Boolean algebra into the measure ring
induced by some probability space.

Let us remark that our definition does not depend on any probability measure
defined on the measurable space (2, ©) and this is sometimes an advantage.

3. Probabilistic Tietze theorem. In what follows R denotes the space of all
real numbers and R the s-algebra of all Borel subsets of the space E.

TuroreM 1: Let (Q, &) be a measurable space, X a separable metric space, M
a closed subset of the space X and V a random transform of the Cartesian product
Q X X into the space (R, R), which is for every fixred » & @ a continuous mapping
V(w, -) of the set M into the space R, such that for every couple (w, z) €@ X M
the relation | V(w, x) | £ s(w), where s is a real-valued random variable, holds.

Then there exists a random transform T of the Cartesian product @ X X into
the space (R; R) so that

(i) for every couple (w, ) € 2 X M we have T(w, ) = V(w, z);
(ii) for every w &  the mapping T(w, -) is a continuous function from X into R;

(iii) for every couple (w, x) € @ X X we have | T(w, z) | = s(w).

Proor: We shall essentially follow the construction in the nonprobabilistic
version of this theorem as given by Alexandroff (see pp. 182-183 in [7]), the
only difference being in the definition of sets A.(w) and B,(w). For the sake of
definiteness we shall briefly describe the construction of the random transform T'.

We set Vio(w, ) = V(w, z) for every couple (v, z) ¢ 2 X M, and for every
n=0,1,2, --- we use the following recursive formulae: For every w ¢ @ we define

An(w) = {(2: V(o z) < —(2"/3"™) s(w)}
and
B.(w) = {z:Va(w, ) > (2"/3"*")-s(w)}.
Let p(x, y) and p(z, A) denote the distance from the point = to the point y or
to the set A. Then for every couple (w, z) € 2 X X we put (the modification in
case An(w) or B.(w) is empty is omitted) T.(w, z) = (2/3)""-s(w)-

p(z, An())/(p(z, An(0)) + p(z, Bu(w))) — (2"-5(w)/3"*") and for every
couple (w, z) e Q@ X M

Vas1(w, ) = Valw, 2) — Ta(o, ).
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Finally for every couple (v, z) ¢ 2 X X we define

n
T(w, z) = lim Ti(w, ).
n->00 k=1
It can be easily seen that the mapping 7' satisfies the three numbered require-
ments, hence we need only prove its measurability. First we shall prove that the
mapping p(xz, A.(-)) is for every z ¢ X and for every n = 0, 1, 2, - - - a real-
valued random variable. We have for every ¢ = 0 the equality

(1) foip(@, 4u(@)) > ¢ = U N {0:Vi(o,9) 2 — (2"s()/3")},
k=1 yeO(z,k)
where O(z, k) is a countable set dense in the set {y:p(z, y) < ¢+ (1/k)} N M.
Indeed, if wo belongs to the set on the left hand side of (1), then there exists a
positive integer k, (dependent in general on wo) so that
inf )p(x, y) > ¢+ (1/k)

yeAn(wo

and hence the set A.(wo) and the set {y:p(z, y) = ¢ + (1/ko)} are disjoint.

Therefore for this ko and for every y £ O(z, ki) we have
(2) Va(wo, y) Z —(2"5(0)/3"™)

and this means that wy belongs to the set on the right hand side of (1). Conversely,
let wy belong to the set on the right hand side of (1). Then there exists such a
positive integer ko, that for every y £ O(z, ko) the inequality (2) holds. Since
the mapping V,(wo, - ) is continuous, the inequality (2) holds for every element
from the set {y:p(z, y) < ¢ + (1/ko)} N M -and therefore the sets A.(wo) and
{y:p(z, y) = ¢ + (1/ko)} are disjoint. Hence
inf p(z,y) 2 ¢+ (1/k) > ¢
vedn(wo)

and wp belongs also to the set on the left hand side of (1). Thus, provided V,
is a random transform, we have that p(x, A.(:)) is a real-valued random vari-
able for every x ¢ X and quite a similar consideration holds for the mapping
p(x, B.(+)). Therefore from the measurability of the mapping V, it follows that
both T, and V. are also random transforms. Since V, is a random transform,
the same holds for 7'. The proof is complete.

4. Probabilistic Hahn-Banach theorem. The next theorem forms a probabil-
istic version of the well-known Hahn-Banach theorem for normed linear spaces.

TaEOREM 2: Let (2, &) be a measurable space, X a separable real mormed
linear space, M a linear manifold in the space X, and V a random transform of
the Cartesian product @ X M into the space (R, R), satisfying the following con-
ditions:

foreveryweQ, acR,BeR, 2eMandyeM

V(w, ax + By) = aV(w, x) + BV (w, ¥);



CONTINUOUS RANDOM TRANSFORMS 1155

Jor every couple (w, x) € Q2 X M we have | V(w, z) | £ s(w)- || z ||, provided the
mapping s of the space Q into the space R is for every & Q defined by the formula
$(w) = supseonu | V(w, z) |, where O = {z: | 2| = 1}.

Then there exists a random transform T of the Cartesian product @ X X into the
space (R, R) so that

(iv) for every couple (w, z) € @ X M we have T(w, ) = V(w, z);

(v) forevery weQ, a e R, Be R,z e X and y & X there holds T(w, ax + By) =
ol (v, z) + BT (w, y);

(vi) for every couple (w, x) €@ X X we have | T(w, z) | < s(w)- ||z ||.

Proor: First of all we shall describe the construction of the mapping 7.

Since X is separable, there exists a countable set {21, 22, -} € X — M
dense in the set X — M. Let for every n = 0, 1, 2, --- the symbol M, de-
note the linear manifold generated by the set M U Ui {2} and let
X, = U,..,g M., . We set for every couple (v, ) €2 X M,,

Volw, 2) = V(w, x)
and for every couple (w, z) €2 X (Xo — M),
Vo(o), x) = 0.

Then for every n = 1, 2, - - - we define recursively for every couple (v, z) €@ X
(XO - M n)
Vilw,2) = Vaa(w,z2) =0

and foreveryweQ, xe M, andte R

Va (w, z + txn) = Vﬂ-—l(w) x) + ¢ SUP (Vn—l(w: $) - s("") ” T — Zan ”)

Further we put for every couple (v, 2) e 2 X X,
T(w, ) = To(w, z) = lim V,(w, z),

and finally for every y ¢ X — X, which can be written in the form y = limu_., ¥ ’
where y, € Xoforeveryn = 1,2, --- , we set

T(w, y) = lim To(w, ¥n)-

It is well known that for every w ¢ @ the mapping T'(w, -) is a bounded linear
functional which is an extension of the bounded linear functional V(w, -) from
the linear manifold M to the whole space X with preservation of the norm. Thus,
only measurability remains to be proved. However, we can write

wis(@) S ¢ = N {o: | Va(w,2) | < d,

ze0

where O is a countable set dense in the set 0. Since V is a random transform, the
mapping Vo is a random transform of the Cartesian product @ X X, into the
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space (R, R). Further we have for every c ¢ R

{w: sup (Vea(w,2) — s(w)- [z — a2 ]) = ¢

eMp_1 — D {w:V,,_l(w, .’E) - 8(0))' ” T = Tn ” = C},

zEMyp_q

where M,_1 © M,_; is a countable set dense in the set M,_; . Thus, T, is a ran-
dom transform of the Cartesian product @ X X, into the space (R, i) and there-
fore the mapping T is a random transform of the Cartesian product @ X X
into the space (R, ) and this proves Theorem 2.

Theorem 2 states that for separable Banach spaces a probabilistic version
of the Hahn-Banach theorem is valid. Theorem 3 below shows that for (not
necessarily separable) Hilbert spaces an equivalent statement is also true.

b. Conclusion. It would be of interest to know the extent to which Theorems
1 and 2 remain valid if the separability assumption is dropped. In this case the
methods of proof used above obviously fail. Unfortunately, the author has not
succeeded either in proving the non-separable versions or in constructing appro-
priate counterexamples. To get other positive results it seems necessary to lay
further assumptions on the space X. Thus, a statement equivalent to Theorem 2
is true for not necessarily separable Hilbert spaces, owing to the possibility of
defining an orthogonal complement to a given subspace.

TaeoREM 3: Theorem 2 remains valid provided X vs a Hilbert space and M a
Hilbert subspace of the space X.

Proor. Since every element xz&X can be uniquely written in the
form x = 2, + 2, where 2, ¢ M and 2, 1. M, we can set for every v & @

T(w,2) = V(w, 21)

and Theorem 3 follows immediately from this construction.

Finally, let us briefly sketch an application of our results.

The well-known Banach-Mazur Theorem asserts that every separable metric
(Banach) space M can be imbedded in an’isometric (isometric and isomorphic)
way into the space C of all continuous functions defined on the closed interval
(0, 1). This theorem enables us sometimes to treat generalized random variables
with values in the space (M, ) as generalized random variables with values
in the space (C, §). This is the case in Theorem 16 in [1], where the measur-
ability of the set {w:U%_; {V.(w)} is strongly compact} must be proved. An-
other example is Criterion 6 in [1] (for wording see Introduction of this paper).
In both these cases the above mentioned treatment provides a simple and
elegant proof of the statement in question.

Using Theorems 1 and 2 we are able to enlarge the number of problems in
which not only generalized random variables with values in the space (M, IN)
are considered, but also random transforms of the Cartesian product @ X M
into the space (R, ). In the present paper we shall mention only one problem
of this kind, namely the Representation Theorem for random Schwartz distribu-
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tions which, roughly speaking, reads: Every random Schwartz distribution can
be represented on every compact interval with arbitrarily great probability as a
derivative of a strictly continuous stochastic process. This theorem was proved
by Ullrich [8] who applied our Theorem 2 with X replaced by C and M by K, ,
where K, stands for the space of rth derivatives of all continuous functions f
defined on a closed interval [a, b] that have derivatives of all orders, the functions
f themselves and their derivatives taking the value 0 at both ends of the interval

[a, D).
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