BOUNDS ON NORMAL APPROXIMATIONS TO STUDENT’S
AND THE CHI-SQUARE DISTRIBUTIONS!

By Davip L. WaLrace
University of Chicago
1. Summary. Formulas closely related to
u(t) = [nlog (1 + ¢/n)}
w(x') = [ = n — nlog (x'/n)}

are considered for converting upper tail values of Student’s ¢ or chi-square
variates with n degrees of freedom to normal deviates. The chief object of the
paper is to construct bounds on the deviation from the exact normal deviates
such that the absolute deviation is bounded by ¢n™? uniformly in the entire tail.
Two approximations for Student’s ¢ are suggested that are remarkably accurate
and an improvement over other available approximations. The bounds and ap-
proximations for Student’s ¢ are given in Section 3 and those for chi-square in
Section 4. Some of the methods used in obtaining bounds may be of value in other
investigations. These are given in Section 2.

The development of the bounds was stimulated by the work of Teichroew [3].
He obtains expansions for the normal deviates corresponding to tail values of
Student’s ¢ and chi-square and achieves spectacular accuracy even for small n.
The idea and the construction of the expansion is set forth, briefly, in [4], p. 647.
The first terms of these expansions are the u(¢) and w(x’) used here. The bounds
of Theorems 3.1 and 4.2 show that these first approximations are correct to
O(n_g) uniformly forall ¢ > 0 or x* > n. This fact can be used to show that the
Teichroew expansions are valid asymptotic expansions.

2. Some results useful for obtaining bounds. Let F be an arbitrary, absolutely
continuous distribution function with density function f, let ®, ¢ be respectively
the unit normal distribution and density functions, and let z(¢) be the root of
®(x) = F(t) (i.e. x(¢) is the normal deviate corresponding to the argument ¢
of F). The problem considered is that of finding bounds on z(t) for a given F.
Any numerical bound on F(¢) can be converted numerically to a bound on z(¢).
Frequently, though, a simple analytic expression for the bound is useful. An in-
equality F(t) =< ®(2(t)) yields directly the bound 2(¢) = z(¢). Two simple suf-
ficient conditions for such inequalities are given in Theorems 2.1 and 2.2.

Often however, only a weaker inequality 1 — F(¢) < ¢[l — ®(2(t))] can be
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obtained in which ¢ is typically slightly greater than one (and may depend on #).
A simple bound on z(¢) can still be obtained analytically, although it is not as
strong as the one that could be obtained numerically. The bounds are obtained
by using the normal tail inequalities and become relatively stronger as z(t)
increases. For two directions of inequality, results are given in Theorems 2.3
and 2.4.

Assume throughout that the density f(t) ts posttive and continuous for a < ¢ < «
and that any approximation z(t) to z(t) is a continuously differentiable, strictly
increasing function for a < t < . (a is any appropriately chosen constant, which
can be — « but need not be the lower boundary of the domain of f.)

Denote by ¢ the function

#(2(2))2'(t) _

(21) g(t) = 0]

Tureorem 2.1. If

(a) limg,e2(t) =

(b) lim.q F(8) = <I>(hm¢.,a 2(1))

(¢) sgn [g(t) — 1] is @ monotonic function of t for a < t < o, then z(t) = 2(¢)
or z(t) < 2(t) for all a < t < o« according as the function in (c) 18 1ncreasing or
decreasing.

TueoreM 2.2. If g(t) = 1/c (£) foralla <t < o, then

1 —F(@) Sl —&@)](Z)foralla <t < .

Ifc = 1, then z(t) = 2(¢) ().
PROOF Let 6(t) = F(t) — ®(2(¢))

5(t) = f |, 9(u) du = [ #s) as.
In the first integral, make the substitution u = 2z(s), so that
50 = [ 19)lgts) — 1 s.

By (a) and (b), 8(a) = 0 = 8( ) and if, by (c), sgn [g(s) — 1] is, say, increas-
ing in s, then 8(t) < 0 and ®(2(¢)) = F(t) = ®((t)) and 2(¢) = z(¢) for all
a <t < ».Theorem 2.2 follows directly from §(¢) = [1 — F(¢)I(1 — ¢)/c (=).
Both theorems clearly hold if ® is any distribution function with continuous
positive density on the entire real line.
TueoreM 2.3. If, for some value of t such that z:(t) > 0, F(t) satisfies an in-
equality
(2.2) 1 — F(t) £ afl —®(a(t))]
with ¢, = 1, and if, in addition either (a) z(¢) > —a(t) or (b) [I — ®(zu(¢))] =
1/(1 4+ ¢1) holds, then

(8) = m(t) — %{t—f
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THEOREM 2.4. If, for some value of t, such that z:(t) > 0, F(t) satisfies an in-
equality
(2.3) L= F(t) 2 eft — ®(2:(8))]
with 0 < ¢ = 1, then

1—co _1___
Co Zz(t) ’

If ¢ £ 11in (2.2) it may be replaced by 1 and the bound z(¢) = 2(¢) used.

z(t) £ 2(t) +

¢ = 11in (2.3) can be handled similarly. Results taking advantage of these con-
stants can be obtained but are rather poor.
Proors. By definition of z(¢),1 — F(¢) = 1 — ®(x(¢)). Henceforth the argu-

ment ¢ in «(¢) and 2(¢) will be dropped. The proofs use the Taylor expansion
®(z) = ®(z) + (2 — z)p(6z + (1 — O)x), 06=1,
and the normal tail inequality

(24) 1-<I>(u)<9%i), u>0.
Inequality (2.2) and condition (b) of Theorem 2.3 together imply condition
(a) since 1 — @(z) £ cifl — ®(z1)] £ /(1 + 1) sothat®(z) = 1/(1+¢1) =
1 — ®(z) = ®(—z)and hencez = —2,.
Eliminating ®(x) between inequality (2.2) and the Taylor expansion and

solving for z gives

(e =11 — &(21)]
¢(6zs + 1 — O)z)

Let ¢; = 1 and assume first that £ < 2 so that, with condition (a), |z | £ 2
and hence ¢(6z + (1 — 6)x) = ¢(z). Using this and inequality (2.4) in in-
equality (2.5), z = 21 — (¢; — 1)/z: . But this holds trivially when z = 2, so
that Theorem 2.3 is proved.

Eliminating ®(2) between inequality (2.3) and the Taylor expansion and solv-

ing for z gives

(25) r= 2z

(1—¢) 1—2&))
e 0+ (1 —0)x)

Let 0 < ¢; < 1, and assume first that z = 2z,. Then ¢(62. + (1 — 6)z) = ¢(x)

and with inequality (2.4),

(2.6) =2+

(1—62)§22+(1_62).

=2+
Czlxl Co 22

These inequalities hold trivially when < #, and Theorem 2.4 is proved.
Let {F.(¢)} be a sequence of distribution functions and {z,(¢)} the correspond-
ing normal deviates. An approximate normal deviate z,(¢) which is a close ap-

proximation to z,(¢) in the entire tail of the distribution would often be useful.
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The results of this section enable detailed boundings of the errors of such ap-
proximations from the corresponding distribution function approximations. The
essential qualitative result is that the absolute deviate error will be of order
p(n) throughout the entire tail if the per cent error (relative to smaller tail) in
the distribution function approximation is of order p(n) throughout the tail.
The result is not quite necessary.

3. Normal approximations to Student’s ¢ distribution. Let F, be the distribu-
tion function of Student’s ¢ on n degrees of freedom.

1 — Fu(t) = au(2)™ ft i (1 + j_;)“‘?ﬂ ds,
n-+1
oA

Denote by z,.(¢) the normal deviate corresponding to the deviate ¢ of Student’s
distribution. Chu [1] has studied the normal approximation ®(¢) of F(¢). He
was not concerned with approximations in the extreme tails of the distribution nor
with quantile approximations; but methods similar to his can be used.
Bounds on the deviate z.(¢) are given by
TarorEM 3.1. For all ¢t > 0 and with u(t) = [n log (1 + tz/n)]§ and k = .368,

a, =T

(a) z.(t) = u(?), n > 0;
(b) 2a(t) = u(®)(1 — (1/20))} = (1), n > 50;
() za(t) = u(t) — k/n' = us(t), n z 50.
COROLLARY. Inequality (b) can be written as

(b') 2a(t) = u(@)(1 — by/n)), n = ne > .50,

with by = no[l — (1 — 1/2no)%|. Three numerical values of by which will suffice
for almost all uses are: ng = 1, by = 293;ne = 3, by = .262; ny = 10, by = .254.

The bounds show that u(t), as an approximation to z.(¢), has an absolute error
not exceeding .368n* and a relative error (relative to u(t)) not exceeding by/n.
Except for very large values of ¢, the bound (c¢) is much poorer than the bound
(b). The main interest in (c) is the rather remarkable fact that even as ¢ and
(%) increase indefinitely the error remains bounded and even of order nt An
interesting theoretical application will be noted in Section 6.

The derivations of the bounds and a few calculations suggest the following
conjectures on the behavior of x,(t): that z.(¢)/us(¢) — 1 as t — 0, and that
u(t) — z.(t) as a function of ¢, increases monotonically to a maximum value
slightly less than .368n* and then decreases monotonically to zero, the maximum
occurring for ¢ and n for which u*(t)/n is substantial.

Calculations indicate that the error, u(t) — x.(t), is close to its maximum value
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unless ¢ is very large, so that the maximum of the two bounds (b) and (c¢) is a
good approximation. Two superior approximations that were obtained em-
pirically are approximations us(t) and us(t),

wit) =) (2241),

2u(t) (1—e*")
8+ 3

3
us(8) = u(t) —

with
s = .368(8n 4+ 3) ‘
24/n u(t)
Foralln > landallt > 0,
ua(t) < wg(t) < u(t),
max (u2(t), us(t)) < us(t) < u(t).

us was chosen as slightly larger than u, to give a good fit for small #/n. us was
constructed to be larger than 4, and u; and to so join them as to give excellent
approximation over a wide range of values. Though the function is somewhat
complicated, it is amenable to slide rule calculation. u, seems to be within .02 of
« for £/n less than about 5 and us within .02 of x for a much wider range.

The bounds u(t), ux(t), us(t), the approximations us(t), us(t), and the ap-
proximation us(t) obtained from the Paulson approximation [2] to F' are illus-
trated in Table 1 for n = 1, 3, 10, and selected values of ¢{. The Paulson approx-
imation gives a normal deviate corresponding to the double tail ¢ probability
and hence has to be converted to be comparable.

3]
In 9

2 43, 2
Polynomial approximations such as the Hotelling-Frankel approximations, are
very poor for small n or for very large &.

All bounds and approximations except us(¢) can easily be inverted analytically
to give bounds or approximations for the Student’s deviate corresponding to a
given normal deviate, i.e., for the quantiles of &.

The proof of the theorem will be preceded by two lemmas.

LemMma 1. For allz > 0, he(z) = (€° — 1) /e is monotone decreasing for ¢ = 1,
monotone increasing for ¢ = % and not monotonic for 3 < ¢ < 1.

ProOF. ho(z) = (1/2%")[xe” — (¢ — 1)(cz + 1)] and is = 0 or < 0 accord-

ing as ze"/((e" — 1)(cx + 1)) is = 1 or = 1. The result follows from a termwise
comparison of the Maclaurin expansions of the numerator and denominator.

K, (1) = - a(ut) =501 — 2(K,(1)]
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TABLE 1
Bounds on the normal deviate x.(t) for Student’s distribution
1 —®(x.(t)) =1 — F.(1)

Bounds from Theorem 3.1 Approximation
n t Exact 2, (i)
Upper u(t) | Lower () | Lower ua(f) u (%) ug(8) g (8)
1 0.3 .235 .294 .208 <0 .241 .241 .257
1 674 .832 .589 .465 .680 .681 .674
2 1.047 1.269 .897 .901 1.038 1.048 1.031
4 1.419 1.683 1.190 1.315 ) 1.377 1.416 1.349
8 1.756 2.043 1.445 1.675 | 1.672 1.750 1.576
12 1.935 2.231 1.577 1.863 | 1.825 1.927 1.670
102 2.729 3.035 2.146 2.667 | 2.177 2.704 1.896
108 4.514 4.799 3.393 4.431 | 3.926 4.447 1.964
3 1 .858 .929 .848 717 .860 .860 .855
2 1.478 1.594 1.455 1.382 | 1.476 1.478 1.477
4 2.197 2.353 2.148 2.141 | 2.179 2.197 2.160
8 2.872 3.053 2.787 2.840 | 2.826 2.879 2.705
12 3.228 3.417 3.119 3.204 | 3.164 3.237 2.935
V3 X 102 5.057 5.256 4.797 5.044 | 4.866 5.058 3.493
10 1 .952 .976 .952 . 860 .953 .953 .948
2 1.790 1.834 1.788 1.718 | 1.790 1.790 1.805
4 3.021 3.091 3.013 2.975 | 3.017 3.020 3.014
8 4.382 4.474 4.361 4.357 | 4.366 4.384 4.279
12 5.128 5.229 5.097 5.113 | 5.103 5.133 4.902
100 100 21.447 | 21.483 | 21.429 21.446 | 21.429 | 21.450 | 18.541

Lemma 2. For all z > 0, ((¢* — 1)e*") /xe® = 1 with k = .368.
Proor. The desired inequality is equivalent to the inequality
Qz) = ¢ — 1 — ze ¥ > 0.
Let T be defined by
Q'(x) — ez—Zkzi[ezkzi _ (1 _ kx% + x)] — ez—2kz9T(x).

The simultaneous equations in 2 and k: Q(z) = 0 and T (z) = 0 will have exactly
one solution with positive  and the root for k is (to three decimals) the smallest
value for which the inequality Q@(z) = 0 holds for all z > 0. The solution is k =
.368 and z = 7.312.

Proor or THEOREM. Proceeding as in Theorem 2.1, set 2(¢) = Au(t) — p
with u(t) = [nlog (1 + £*/n)]* and with X, u constants to be chosen. Then form
the function g(¢) = ¢(2(¢))2'(¢)/fa(¢) written as a function of z = ’/n, which is
monotonic in ¢,
26—P2 (ez _ 1)62)‘" (nz)}

#(0) = h(z) =

where ¢ = 1 — n(1 — \%).

a? xecs
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First, set u = 0. Then z(¢) = Mu(t) satisfies conditions (a), (b) of Theorem 2.1.
Monotony of g(¢) and hence condition (¢) of Theorem 2.1 follow from Lemma
1: decreasing for ¢ = 1 or N = 1, increasing for ¢ = % or A = (1 — (1/2n))%
Conclusions (a) and (b) follow.

Next set A = 1 and u = k/n! with k = .368. Then, using Lemma 2, g(t) =1
for all ¢ > 0, provided that a.c**" < 1. Hence (¢) follows from Theorem 2.

The proof that a,e"’*" < 1 for all n = .50 and that (1 —(1/2n)) =1 —b/n
from which the Corollary follows are given in Section 5.

4. Normal approximations to the chi-square distribution. Let ¥, be the dis-
tribution function of chi-square on n degrees of freedom (using ¢ instead of x°
as argument).

1 T e gs.
&l
‘ 2

Denote by y.(t) the normal deviate corresponding to the chi-square argument .
Only the upper tail with ¢ > = is treated in this paper. Bounds on 1 — F,(¢) and
y.(t) are given by

THEOREM 4.1. For all t > n, all n > 0, and with w(t) = [t — n — n log (t/n)]},
and wo(t) = w(t) + 2(2/n)}

(a) 1 — Fo(t) > dae™"[1 — ®(w(2))]
(b) 1 — Fo(t) < duJl — ®(w(t))]

in which

T(n/2)
TaEOREM 4.2. For all t > n,
(a) ya(t) = wo(t) + (1/wa(t)) max [0, dz'e™*" — 1], n >0,
(b) ya(?) 2 w(?), n > .37.

CoROLLARY 1. Inequality (a) can be written as

(a') ya(t) = we(8) + bo/nwn(t), n = n >0,

with by = ne(¢’"®™ — 1). Numerical values of b, which will suffice for almost all

uses are: np = .37, by = .060; no = 1, b, = .058, ny = 10, b, = .056.
COROLLARY 2. For all t > n and all n > 37,

w(t) £ ya(t) < w(t) + 600,

The bounds on y,(t) are illustrated in Table 2 for n = 8 and selected values of
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TABLE 2
Bounds on the normal deviate y.(t) for the chi-square distribution
1 —®(ya(t)) =1 —Fa(t), n=38

= Bounds from Theorem 4.2 Wilson-Hilferty
i i Exact yn(8) - wy (f)
Upper (a’) Lower (b)
12 1 1.031 1.095 .869 1.055
16 2 1.724 1.769 1.566 1.726
20 3 2.314 2.354 2.160 2.310
24 4 2.835 2.874 2.685 2.820
32 6 3.737 3.776 3.593 3.691
40 8 4.512 4.553 4.373 4.427
72 16 6.940 6.989 6.813 6.647

t. Shown are bounds (a) and (b), the exact normal deviate ¥, (t) and the Wilson-
Hilferty [6] approximate deviate

(t/n)lls -1 + %

B e

The Wilson-Hilferty approximation is much superior to the bounds as approx-
imations except in the extreme tail and the chief value of the approximation is
the uniform bound of order 7~ on the error in the tail.

The proof of the theorem will be preceded by a lemma.

LemMma 3. Forallx > 0,

(a) M=z) < 2

(b) ™\ (z) >
with N(z) = 2fe — log (1 + 2)I%

Inequality (a) follows immediately from log (1 + z) > z — /2. It cannot
be improved by any factor of the form exp (k\(z)).

Inequality (b) is sharp for small z and the coefficient in the exponent cannot
be decreased. Let

Y=

Denote derivatives with respect to z by primes. The proof consists in showing that
y1 > 2and y2 < Zforall z > 0, from which it follows that y» < 1 + 22/3 < w1
and hence, inequality (b):yi > yi.

2/3 — '—-—2~|:u2-—3u'c+—§£—]=—?—'—l3(x)
V2= 30 T e] T 3™

OB g =2, uw = N(z).

B(x) =4[log(1 + z) —fﬂ +3%(_(1x_+—_£2_
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Hence g(z) > Oforallz = 3.

, _2(3—x) 3z [2* — 3]
F@) ==17 [k’g(lﬂ) _~]+ 20 + 2
Let
1+2) 32’
v(z) = 2@ — )B(x) log (1 + z) —x'f‘m-

2(5 — )
1+ 228 — 2"

Hencey'(z) > O0forall0 < x < 5.v(0) = 0sothaty(z) > O0forall0 < z < 5.
Then 8’(x) > O for all 0 < z < 3. Since 8(0) = 0 B(x) >0for0 <z <3,
which, combined with the result for x = 3 gives y2 < %2and . < 1+ 2z/3 for
allz > 0.

Let

¥ (z) =

5()_31712_2":3)_21__
Y1

Then 8(z) = N — &* 4+ (2)2A = N1 — 1) + (2)2°\. Using the inequalities
y2 < 1 4 2z/3 and N < x gives 6(x) > 0 for all z > 0. Since y1(0) = 2 and
11(0) = 1, the desired result 3 > 1 + 2z/3 for x > 0 follows immediately and
inequality (b) is proved.
Proor oF THEOREM. Set 2(2) = w(t) + ¢(2/n)! and form the function g(¢)
of (2.1), written as a function of + = (¢ — n)/n, then
—oA (@)

1 —c2n$6
g(t) = ! O

with AM(z) = [2(z — log (1 + x))]*. Using Lemma 3 and Theorem 2.2, with ¢
equal to 0 and , Theorem 4.1 follows.

The first part of Theorem 4.2 follows using Theorem 2.4 and the second part
from the fact, proved in Section 5, that d, < 1 for n = .37. Corollary 1 follows
from the fact, proved in Section 5, that e “°"d;" < 1 + by/nforn = no > 0.
Corollary 2 follows from Corollary 1 and the theorem.

5. Bounding of some simple functions. In this section four results, used in
Sections 3 and 4, are derived. Specifically, with

I‘<n—-+ 1 <g>—n—;~ e (2r)

_ _2)(%>* _\e) °m
" (G N 7 B
_ 1 K _ 1/18n¢
bh=me| 1l — 1—2———— s by = mo [e — 1],
Mo

(5.1) a, """ 1, n = .50;
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1\ by
(5.2) 1—%)_2_1—;, n = n > 50;
(5.3) d. <1, n = .37;
_1
(54) e9"d;1§1+%2, n=n >0.

An easily proved result that is used repeatedly (with x = 1/n) is the following:

Lemma 4. If f(x) has a uniformly convergent Maclaurin series for 0 < z < o
and if all derivatives of f(x) at x = 0 of order greater than m are of constant sign,
say positive, then for all 0 = x = a0,

Tw(z) §f(13) Twal(z) + 2™

Tt (xo):l

g

[f(xo) -

where T (x) is the partial sum through order m of the Maclaurin series. (If sign
1s negative, the direction of the inequalities is reversed.)

(5.2) is a direct application of Lemma 4.

The Stirling expansion with argument /2 is just the expansion of —log d,
and the first two partial sums bracket the value ([5], p. 253).

1 1 1
(5.5) n 45n3 < —logd, = Bn’ n > 0.
By the duplication formula for the gamma function, a, = d%/ds. so that,
1 1 1 2
S < - 4 _“
(56) In " 360m = 8% = T, T e n>0

Using (5.5), it follows that log d, < 0 and hence (5.3) forn® = 2/150rn = .37.

Also, for all n > 0,
d;le—(IIQn) _ 1 < 61/1811 — 1

and (5.4) follows by application of Lemma, 4.
From (5.6) it follows that

K2m 1 2
e = exp [n< T +45n2):|

The exponent is negative if n = .494 proving (5.1).
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