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1. Introduction. This paper considers a problem arising in the design of ex-
periments for empirically investigating the relationship between a dependent
and several independent variables, all variables being continuous. It is assumed
that the form of the functional relationship is unknown-but that within the range
of interest, the function may be represented by a Taylor series expansion of
moderately low order. Specifically, the problem considered herein is that choice
of combinations of levels of the independent variables which, a) will enable an
experimenter to approximate a functional relationship by fitting a Taylor series
expansion through terms of order 3, by the method of least squares, and b) will
have the property of rotatability. Such a choice of combinations of levels of the
independent variables will be called a third order rotatable design.

For the sake of brevity, the abbreviation dth ORD will be used to denote
dth order rotatable design.

2. Rotatability. The property of rotatability as a desirable quality of an experi-
mental design was first advanced by Box and Hunter in [1]. This property is
that the variances of estimates of the response made from the least squares
estimates of the Taylor series are constant on circles, spheres or hyper-spheres
about the center of the design. Thus, a rotatable design, that is, a design which
achieves this property, could be rotated through any angle around its center and
the variances of responses estimated from it would be unchanged.

Box and Hunter proved that a necessary and sufficient condition for a design
of orderd (d = 1, 2, 3, --- ) to be rotatable is that the moments of the inde-
pendent variables be the same, through order 2d, as those of a spherical dis-
tribution, or that these moments be invariant under a rotation of the design
around its center.

Let k& be the number of independent variables, or factors, and let
Ziwy Touy * 5 Tk bE the levels of these variables for the uth experimental point
in the factor space, (v = 1,2, - -+ , N). Then a pth order moment is defined as

N
—1 r t
N Zx‘ilux2u "'xku,

u=l
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where 0 < ¢ 0= r,---,0=t¢tandq+ r -+ + ¢ = p. Further, let the in-
dependent variables be standardized so that

N

u=l

Let 5. be the expectation of the response at the uth experimental point. For
a polynomial equation of third order this may be written

1L5j=

k k k

(22) =B+ 2 Bitaw + 2 BuTalut 2, BiitTiuTiuli
i=1 j=1 i<jgi=1

or in vector notation as

(23) T = ZTub.
(For what is to follow, the order of the terms in (2.3) is different from that in
(2.2).) If the (N X L) matrix X is defined as

gl

(24) X=(71,

where L = <k —; 3) , the number of terms in (2.2), and if X’ is the transpose of

X, then N7'(X’X) is the moment matrix of a configuration of N points in the
k-dimensional factor space.

For the configuration of N points, or the design, to be rotatable, N'(X'X)
must satisfy

G 0 0 0 0 0
MI 0O OO 0 0
K: 0 0 0
K, 0 0
(25) N'(X'X) = .
(symmetric) Kr 0
i Nl |
in which the submatrices are defined as follows:
1 1 1 ... 17
E) VIR Ve e V!
M

3Ny -
(26) .

IR
Il
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3 2 2 2
Xy Ty X;T1 T;Te T T

r— —

1 3N M M e N
150 3Xs 3Ns -+ 3Ne
3he N 0 N

(2.7) K; M M G=1,2-,k)
5 3N ]
1y 13 Lp—1 Ti
f_)w 0 --- 0"
) VIR )
(28) MI = N
As
X1 T2 X3 X1 X2y cc Tk—2 Tk—1 Tk
A 0 e 0 1
)\6 e (1]
(29) Nl = '
! DY

The headings at the top of the matrices in (2.6) through (2.9) are intended
to indicate the form of the elements in the matrices; they are not the vectors
of (2.4). The reader will note that the arrangement of the moment matrix (2.5)
is different from the arrangement of the second order moment matrix in [1].
(2.5) is written in this form to point out the amount of orthogonality present
and to facilitate the calculation of the inverse.

In (2.5), 0 denotes a null matrix of appropriate size and in (2.7) the column
and row corresponding to z: appears only once and always in the second position.

The constants, Ay and \s , must satisfy the restrictions

k
| Ak + 2)

if (2.5) is to be positive definite.
The criterion of rotatability for a third order design is characterized mathe-
matically by equation (2.5) with its attendant restrictions, equations (2.10)
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and (2.11). To find a 3rd ORD in k factors, one must discover a set of combina-
tions of factor levels whose moments are those of equation (2.5).
The inverses of the submatrices in (2.5) are

b ¢c ¢ --- ¢
d e P e
d --- e
G'=4 . .
L d
f g g9 9 g9
h m m m
w m m
;'—1=B w‘ m
L w J

WD =TI DT =T/
in which
b=2k+2N c¢=-2 d=(k+DN—k+1
e=1—N\ =60k 4 r)\

2
g=—6M h=k+1— (k— DA/ m=3<;—:—1)

w =3[k + 3 — (k + 1)Ai/Ad
and where A and B are given by
(2.12) 1/4 = 2\[(k + 2)\ — ]
(2.13) 1/B = 6[(k + 4)\s — (k + 2)Ai].

3. Third order rotatable designs in two factors. Consider an arrangement of n
points equally spaced on a circle in a two dimensional factor space. In reference
[1], Box and Hunter prove that n > 2d is a sufficient condition for all moments
through order 2d of the coordinates of these points to be invariant under rotation.
That is, n > 2d is sufficient for the arrangement to be rotatable of order d.
We shall prove the necessity of this condition as well.

We shall use a theorem given by Bose and Carter in reference [3], an earlier
version of which was stated by Carter in [4]. Let (21, #24) (v = 1,2, --+, n)
be the n points of any arrangement A (which may be a design) in the space
of z; and 2, . Denote by a(21.), a(x.) the coordinates of the point (1., )
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after a rotation about the origin through a fixed angle a. From Section 2, it is
clear that the arrangement 4 is rotatable of order d if and only if, for any rotation
a performed on all n points of 4,

n

(B1) 2 a"(wn)e’ (w2) = 2 aluh, for 0=q0=r0<g+r=<2d
u=1 u=l
The Bose-Carter theorem proceeds as follows: Let 2z, = 1. + 220 and a(2.) =
z.'%. Also let 2, be the complex conjugate of z,, and Z,e " the complex con-
jugate of a(z,). Put ¢ + r = p. Then we may write
n n n
(32) 2 alwhu =277 2 (2t 2) (2a— ) =277 D ma) 2%z,
u=l u=l s4t=p u=l
where the m,: are sums of combinatorial constants, some of which may be zero.
Similarly

n

(33) X o' (m)a () = 2% Y, ma Y 205 .

u=1 84-t=p u=1

From (3.2) and (3.3) we see that to satisfy (3.1) it is sufficient that
(34) D 243, = 0for0 <s0=<1¢0<s+t=2dunlesss =1
u=l

Since

23 = (v + @) (3 — i) = ), ngwixl,
g+r=s+t

then

n

n
eta(a—-t)z 2:42:4 — E nqrzlaq(xlu)ar<xzu).

u=1 g+r=s+tt u=

Hence, if the arrangement 4 is rotatable of order d (i.e., if (3.1) holds), then

n n
€T B = DL mepD, ahah

u=1 qtr=s+t u=l1
is independent of «, from which it follows that (3.4) must hold. Thus (3.4) is
necessary and sufficient in order that A be rotatable of order d. This is a state-
ment of the theorem of Bose and Carter.

Now let the n points (1, , Z2,) be points equally spaced on a circle of radius

p. Then we may put

Ziw = pcos (2mv/n),
T2y = p sin (2mv/n)

whence

Zu = p 621;1:/»,

214 = pe—2rw/n, v

0,1,---,n—1.
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The arrangement consisting of these n points is rotatable of order d if and only
if

-1
(3 5) Z 2 Z — s+th: leiv(s—t)ln
. ufu

v=0
=0 for0<s0=<t0<s—+t=2dst

which is a corollary of (3.4). By a well known theorem on the roots of unity
Dord &7 — 0if and only if s — ¢ is not an integer multiple of n. One sees
immediately that s — ¢ cannot be an integer multiple of n if s + ¢ < n and that
s — ¢ will be such a multiple for some s and ¢ if s + ¢ = n. Since (3.5) should
be satisfied for any non-negative s, t with 0 < s + ¢ < 2d, then n > 2d is neces-
sary and sufficient for equally spaced points on a circle to be rotatable of order d.

Equation (2.5), then, if satisfied by n > 6 points equally spaced on a circle.
But it may be verified that for this arrangement

2 2
X4 T
n E 1u T2u np4n /8

M: kd = ==

PRI > P b2

which does not satisfy (2.10). Therefore, these points do not constitute a ro-
tatable design. If n, is the number of points on the circle and n, points are added
at the center, A, becomes

(n1+n»z)pn1/8 1
M= T [” ]

which satisfies (2.10), but then

(m + nz)zpenl/lﬁ - _]:[: + N2 | _ _2_)\2
3(n/2)° 6 ml 3™
and (2.11) is not satisfied. Equally spaced points on a circle with additional
points at the center, then, do not constitute a 3rd ORD.

Now consider an arrangement of N points on two concentric circles with
n; points equally spaced on a circle of radius p; and n, points equally spaced
on a circle of radius p; , where ny + np = N, p1 # ps, ;¢ > 0, po > 0. We shall
prove that the arrangement consisting of these n; + n, points is rotatable of
order d if and only if both n, > 2d and n, > 2d.

In the same manner as before take the first n; points as

1
2

A =

p;ehiv/nl (1) — O, 1’ e my — 1)
To allow the second 7, points to take any orientation with respect to the n, points,
take them as e”p,e®™™'™ (v = 0, 1, - -+, ny — 1). The arrangement is rotatable

of order d if and only if

n1— no—1
—4 — 2 —1
(3.6) a+t Zo np(a )iny + et(a t)ﬂ e+t Z% env(a )/ ng - O
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for 0 < 5,0 < ¢, with0 < s + ¢ < 2d unless s = ¢. But the sums in (3.6) are
0 or n; and 0 or 7. respectively. Hence (3.6) holds if and only if both sums are
zero. In order that this be true we know that n; > 2d and n; > 2d is necessary
and sufficient.

It is easily shown that this type of arrangement provides a 3rd ORD if n,,
ny > 6. For then

N = Nm pi+ mp2)/8 _ 1mip + n3 ps + m ma(pi + p2)

1n
[npl + n2 pflt/4 2 ndpf + nd pf + 2n1ms p? o3

and since pi + ps > 2pips , for p; # ps, Aa > %. Therefore, (2.10) is satisfied.
Similarly

N® (m P1 + n2 p3)/16
3 [m1 p} + 72 p3]%/8

A = >)\4

since

As _ 211 + 73 p3 + ma e i p3(p1 + p2)

A2 3 nip} 4 nfpf + nanepf 03201 p3)

which is greater than £ for p, # pe and so (2.11) is satisfied, also.

Thus, it has been shown that a simple class of 3rd ORDs in two factors exists.
This class consists of designs which have seven or more points equally spaced
on each of two concentric circles. Each of the circles may be rotated inde-
pendently of the other and therefore there are an infinite number of configurations
possible for designs with a given n; and n. . Since points located at the center of
the circles do not disturb the moment properties of the configuration, these may
be added at will to achieve variations in the parameters A, and \e .

4. Sequential third order rotatable designs in two factors. A 3rd ORD of the
type described in the previous section may be performed in two ‘“blocks.” By
judicious selection of p; and p;, the radii of the two circles, the coefficients in
the Taylor series expansion may be estimated independently of the block effects.
If one block of points is a complete 2nd ORD and the second block consists of
additional points necessary to make the whole a 3rd ORD, the design may be
called sequential, in that an experimenter need not perform the second block of
points if he feels the first block has given him an adequate approximation to the
phenomenon.

Suppose the first block consists of seven or more points equally spaced on a
circle with some points at the center. This allows the estimation of polynomial
coefficients up to and including the second order. Now add a second block con-
sisting of seven or more points equally spaced on a circle of different radius from
the first. Let n; be the number of points in the first block and n, the number
of points in the second block. Let 8, be the effect of the first block, &; the effect
of the second block, and let Z,, = 1 if the uth observation occurs in the wth
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block, w = 1, 2, and Z,, = 0 otherwise. Then, the expectation of the uth observa-
tion can be written

M = Bo + 2 B + 202 Biiii
i i g ~
(41) + ZZZI Bijlxt'uxjuxlu + Z 6w(Zwu '—Z wu)
T 7 w

in which Z, = 24 Zwu/N,and N = n; + s
If the estimates of the block effects are to be independent of the estimates of
the polynomial coefficients, it is required that

(4.2) Z (Zow — Zu) = 0
(4.3) 2 (Zuw = Zu)tia = O
(44) Z,; (Zww — Zu) st = 0
(4.5) Zu: (Zwu — Zw) T juiu = 0

forw =1,2and 47,1 = 1,2. (4.2) is satisfied by the definition of Z., , while
(4.3), (4.4) and (4.5) are satisfied with one exception, by the fact that Z.. — Z
is constant within blocks and each block contains a rotatable arrangement of
points. The exception is in (4.4) when ¢ = j. For this case, if na = the number
of points at the center in the first block, and ne; = the number of points at the
center in the second block, (4.4) becomes

2 2
[1—-%][m—nol]§+[_7n’][nz—nmlg=0

or
I_JE na(ny — ’nox)

Pl m(ng — ne)

Therefore, by selecting ps, the radius of the circle in the second block, in
accordance with (4.6) the experiment may be performed sequentially and esti-
mates of polynomial coefficients will be free of block effects. It is interesting to
note that (4.6) is independent of the number of points in the second block, if
ne = 0, it being required only that n, > 6. A 3rd ORD with these blocking
properties is not possible, however, if ngng = nime .

The 3rd ORD may be sequentialized in three stages with a total of either
three or four blocks. Block I would consist of 7;/2 points of which n¢/2 are
central points and such that (n, — n)/2 is an integer greater than or equal to
4. The (my — no0)/2 points would be equally spaced on a circle of radius p,
and the (n; — no)/2 points would constitute a 1st ORD. Block IT would be
identical with Block I with the points superposed so that Blocks I and II jointly
would have n; — ng points equally spaced on a circle of radius p; and ne points
at the center and thus would form a complete 2nd ORD.

(46)
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The third stage, Block III, would consist of nz — ng points, greater than 6,
equally spaced on a circle of radius p; (where p; is determined from (4.6)) and
nez points at the center, in a three block design. Blocks I, II, and III would
make up a complete 3rd ORD.

If the experiment were to be sequentialized in three stages and four blocks,
the third stage would be constructed of two blocks similar to Blocks I and II,
but with radius p; , and with the possibility of no central points.

5. Third order rotatable designs in three factors (non-sequential). A 3rd
ORD in three factors may be formed from the points at the vertices of a cube,
two octahedra of different radii, and a cuboctahedron, all oriented symmetrically
to one another. The coordinates of the points of the cube can be represented by
all possible permutations of the elements of the vector, (4a, ==a, ==a); of one
octahedron by the permutations of the elements of (41.82969a, 0, 0); of the
other octahedron by the permutations of the elements of (41.16343a, 0, 0);
and of the cuboctahedron by the 12 permutations of the elements of (:i:a2é,
+q2} , 0). The value of ais the scaling factor chosen so that >N i = N, the
total number of points. The constants, 1.82969, 1.16343, and 2% are those which
will satisfy the moment requirements inherent in equations (2.6) and (2.7) for
this composite configuration. The parameters for this design are given below
for various numbers of points added at the center of the design. Also given are
the values (5/7)\i, which, in accordance with (2.11), must always be exceeded
by )\6 .

N No. of Center A e S\
32 0 .638 .300 .201
33 1 .658 .319 .309
34 2 .678 .339 .328
35 3 .698 .359 .348
36 4 718 .380 .368
37 5 738 .402 .39
38 6 758 .423 .410
39 7 778 .446 .432
40 8 .798 .469 .455

Another 3rd ORD of the non-sequential type can be formed by orienting an
icosahedron of radius ¢ symmetrically with respect to a dodecahedron of radius
1.11236224a, with or without central points. But with 0 to 8 central points
Ne — (5/7)\i is never greater than 0.000061, so that this design could not be
recommended.

6. Third order rotatable designs in three factors (sequential). Of greater
interest than a 3rd ORD per se is the 3rd ORD which can be performed se-
quentially, and particularly those sequential designs in three factors which may
be extended to higher dimensions.
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Consider the sequential design as being performed in two parts: the first part
to be a 2nd ORD and the second part a set of points which, when added to the
first part, makes a 3rd ORD. If the second order moment properties are to be
preserved after the addition of the second set of points, it is obvious than both
parts of the design must be complete 2nd ORDs in themselves.

For the first of these 3 dimensional sequential designs consider the design
whose initial portion is the cube + octahedron configuration with points at the
center. By adding to this, the points of a truncated cube and of another octa-
hedron, a 3rd ORD results. This design would not be recommended in practice
because, like the icosahedron-dodecahedron design of the previous section, the
resultant matrix of normal equations is poorly conditioned. That is, although the
inequalities (2.10) and (2.11) are satisfied, (2.11) is very close to an equality.
Consequently, the linear and cubic coefficients are very poorly estimated. The
design is presented here because it provides a basis for a more useful design
which follows.

The coordinates of a truncated cube in 3 dimensions can be written as all 24
permutations of the elements of the vector, (&¢, =d, &=d), where the radius of
the figure is given by p° = ¢ + 2d° and where ¢ is a measure of the amount of
truncation. For example, if ¢ = d the figure is not truncated at all and the 24
points make up a triply replicated cube. If ¢ = 0, the truncation is extreme and
the figure becomes a doubly replicated cuboctahedron. It can be shown that if

54 24/10 .
¢C=—"735 °*

the 24 points constitute a 2nd ORD, but this value of ¢ is not helpful in con-
strueting a 3rd ORD.

For the first portion of this sequential design let the cube have radius p; and
an octahedron have radius

_2
Pz—-\/?—,m-

Box and Hunter [1] show that this arrangement of 14 points comprises a 2nd
ORD. To this, as the second portion of the sequential design, add a truncated
cube of radius p; and coordinates, (==¢, -=d, &=d) and another octahedron with
coordinates (Zps, 0, 0). Then it can be shown that if py =+/3, p» = 2},
pz = 1.657765, ps = 1.705945, ¢ = 0.184388, d = 1.164944, a 3rd ORD results.
But for 0 to 10 central points \s — 5\i/7 is never larger than .0005.

However, the difficulty of the ill-conditioned matrix may be avoided by
modifying the design slightly. This is accomplished by using a cube and ‘“‘doubled
octahedron,”’ instead of a cube and octahedron in the first stage of experimenta-
tion. By doubled octahedron is meant fwo experimental points at each vertex of
an octahedron. Let p; , p2, o3 and ps designate the radii of a cube, doubled octa-
hedron, truncated cube and octahedron respectively. If the first portion, con-
sisting of the cube and doubled octahedron is to be second order rotatable, then
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p2 = pmV/2/3. The second portion of the design consisting of the truncated
cube and the other octahedron must have dimensions satisfying the equations

(6.1) pt = ps + 10c%03 — 15¢"
(6.2) 208 = —21c® + 9¢'0} + ¢*o5 + 3p3
(6.3) 1800 = p3 — 19¢ps + 39¢'p; — 21¢°

which, in turn, will satisfy equation (2.5). If p; again equals 4/3 and hence
p2 = /2, then an admissable solution of (6.1), (6.2) and (6.3) is ps = 1.851208,
ps = 1.985406, ¢ = 0.341564. The coordinates of the resultant design are
(for the first stage of experimentation)
the 8 permutations of (Za, +a, +a),
the 6 permutations of (&=a /2, 0, 0),
the 6 permutations of (4=a 4/2, 0, 0) again,
and, if desired, points with coordinates (0, 0, 0);
(for the second stage of experimentation)
the 24 permutations of (+.341564a, +1.286527a, =1.286527a),
the 6 permutations of (4-1.985406¢, 0, 0),
and, if desired, points with coordinates (0, 0, 0),
where, again, a is chosen so that > 2, = N.
The values of the parameters for number of central points to 10 are:

N Numb;x:) :)xf tsCentra.l A e Y7

50 0 .6271 .2902 .2809
51 1 .6396 .3019 .2922
52 2 .6522 .3139 .3038
53 3 .6647 .3261 .3156
54 4 .6773 .3385 .3277
55 5 .6898 .3511 .3399
56 6 .7023 .3640 .3523
57 7 .7149 L3771 .3651
58 8 L7274 .3905 .3779
59 9 .7400 .4041 .3911
60 10 .7525 .4179 .4045

Block coefficients may be introduced into the model with this design also.
Following Section 4, n; — na = 20 and ns — ne = 30, so the equation which
expresses the condition for orthogonal blocking is

N

(30 + 702) 21 Th = (20 + o) D h

u=ni+l1
or

(6.4) nge = 2.206n0, + 14.124
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Applying equation (6.4), the following table of design numbers for approxi-
mately orthogonal blocking results.

no1 702 m n2 N
0 14 20 44 64
1 16 21 46 67
2 19 22 49 71
3 21 23 51 74
4 23 24 53 77
5 25 25 55 80
6 27 26 57 83
7 30 27 60 87

7. Third order rotatable designs in more than three factors. As is well known,
only the analogues of the tetrahedron, the octahedron and the cube exist, as
regular figurés in more than four dimensions. The latter two were used success-
fully by Box and Hunter [1] in their development of 2nd ORDs in the higher
dimensional factor spaces. In Sections 5 and 6 some semi-regular figures were
described which provided 3rd ORDs for three dimensions. Of these semi-regular
figures, the truncated cube was of particular interest in that it provided a basis
for the construction of three dimensional sequential 3rd ORDs.

The higher dimensional analogue of the truncated cube is not easy to identify.
The obvious extension from three dimensions to k dimensions would be the
figure whose coordinates are the permutations of the elements of (Z=¢, =d,
.-+, =d), there being £ — 1 elements £d. Call this “truncated cube (1).” A
less obvious, but nevertheless reasonable extension to k¥ dimensions is the figure
whose ceordinates are the permutations of (¢, ¢, « - - , ¢, &=d, =&=d, - -+ , £=d)
with, say, r elements ¢ and k — r elements +=d, and with 1 < r < (k + 1)/2.
Let this figure be called “truncated cube (r).”

From the point of view of economy in the number of experiments, “truncated
cube (1)” would be preferred as a part of a design since it contains fewer points.
The number of points in “truncated cube (1)” is k2*. The number of points in

“truncated cube (r)” is (f) 2*, which is always larger for 1 < r < k — 1. Un-

fortunately ‘‘truncated cube (1)” cannot be used with the ‘“‘cube” and “octa-
hedra” to form sequential 3rd ORDs for & > 3. This can be shown as follows.

Consider the configuration made up of the k-dimensional ‘‘truncated cube (1)”
and a k-dimensional “octahedron” of radius p. For a sequential design of the
type described in Section 6, this composite configuration would comprise the
second stage of experimentation and therefore the coordinates must satisfy the
requirement (in addition to the requirements satisfied by the symmetry of the
configuration),
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For this configuration
2o =2 + (k — 1) d'] + 25*

D T = 24728 + (k — 2) dY.

Substitution of the above into (7.1), requires
(7.2) ¢ =3d %+ [(4+ 2) d* — 27"

The configuration for the second stage when combined with the first stage
configuration consisting of a k-dimensional “cube” of radius (k)! and k-di-
mensional “octahedron” of radius (2)** must satisfy the condition

(7.3) D Thkh = 3 D, dhatutie, ((H£j#E1I=1,2 k).
For the combined configurations (7.3) requires

o 4d' & [(9 + 2k)d® + 247}
Cc = D

The minus sign in (7.4) will give a negative ¢’ (with k¥ > 3) and therefore must
be disregarded. Equating (7.2) to (7.4) (with the plus sign) and simplifying
gives

(7.5) 3d° + d'27% + V(O + 2k) & + 247 + 1 = 0,

which is impossible since each term on the left of (7.5) must be a positive
quantity. Therefore, “truncated cube (1)” cannot be used in a 3rd ORD of this
form if % is greater than 3.

With k& = 4 a sequential 3rd ORD was discovered. The first stage of the design
consists of a four dimensional “cube” of radius 2 and a 4-dimensional “octa-
hedron,” also of radius 2. (Actually, this is a 4-dimensional regular figure of 24
points.) The second stage is comprised of a 4-dimensional “truncated cube (2)”’
with coordinates (¢, +¢, £d, =d) and another 4-dimensional “octahedron”
of radius p. To satisfy equation (2.5), we must have ¢ = 1.200919, d = .256303,
p = 1.736604. This design contains 16 points on the “cube,” 8 points on the
first ‘“octahedron,” 96 points on the ‘“truncated cube” and 8 points on the
second “‘octahedron” for a total of 128 points without center points. The design
parameters are Ay = .676 and A\ = .349. The coordinates of experimental points
for this design are

(for the first stage)

the 16 permutations of (Za, +a, +a, +a),
the 8 permutations of (£2a, 0, 0, 0),
and, if desired, central points (0, 0, 0, 0);
(for the second stage)
the 96 permutations of (£1.200919q, +1.200919a, =-.256303, +.256303a),
the 8 permutations of (21.736604a, 0, 0, 0),
and, if desired, central points (0, 0, 0, 0),
with @ such that D v 25 = N.

(74)
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For approximately orthogonal blocking of the two stages of experimentation,
the number of center points in each block, ne and ne , is shown in the following
table. The total number of points and the design parameters are also given.

fo1 noz " ne N e Ne 61Y/8
8 0 32 104 136 .719 .394 .388
9 4 33 108 141 .745 .423 .416
10 7 34 111 145 .766 .447 .440
11 10 35 114 149 787 .472 .465

The relationship, As > 6\i/8, appears to be sufficiently well satisfied so that
no investigation of the design utilizing a doubled octahedron (and 8 additional
points) was made.

No attempt was made to extend the concept of 3rd ORDs to more than four
dimensions, chiefly because the approach pursued in this paper required the use
of an excessive number of experimental points. Investigations were made, follow-
ing this approach, only of the sequential type of rotatable design because this
is the type which seems likely to be most useful to an experimenter.

Considerable savings were demonstrated by Box and Hunter in the case of
2nd ORDs by the use of fractional replication for & > 4. With k equal to five
or more the second order coefficients are confounded only with third and higher
order effects when fractional replication is used. But for third order coefficients
to be confounded only with fourth and higher effects, the dimensionality must
be at least seven in order to make use of fractional replication. If a half replicate
of a 7-dimensional design of the type described in the preceding section were
possible it would require at least 1,436 experimental points.

If a full replicate, 5-dimensional design of this type were possible, 372 points
would be required. The same design in six factors would require 1,048. Third
order rotatable designs derived from figures which are symmetrical in all k-di-
mensions would appear to be impractical for &k > 4.

8. Summary and conclusions. This paper is concerned with extending the
criterion of rotatability, as advanced by Box and Hunter [1], to experimental
designs for estimating response surfaces by third order polynomial equations.
The method of attack has been to examine combinations of regular and semi-
regular geometrical figures and find those combinations whose coordinate points
satisfy the moment properties, to order six, of spherical distributions. Designs
with these properties and the attendant restrictions were shown by Box and
Hunter to have spherical variance contours when the polynomial coefficients
were estimated by the method of least squares.

It was found that 3rd ORDs in two factors could be attained by locating
seven or more experimental points equally spaced on each of two concentric
circles of different non-zero radii. Also it was shown that certain rotatable de-
signs in two factors can be performed in two stages, so that second order poly-
nomial coefficients can be estimated after the first stage and third order poly-
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nomial coefficients after the second stage. By choosing the radii of the two circles
in the proper ratio it is possible to obtain estimates of the polynomial coefficients
which are independent of “block’’ effects due to running the experiments in two
stages. Such designs were termed sequential 3rd ORDs.

In three factors, 3rd ORDs were presented which consisted of composites of
cubes, truncated cubes, octahedra, cuboctahedra, icosahedra and dodecahedra.
Two of these designs in three factors were constructed so that they might be
performed sequentially.

One sequential 3rd ORD in four factors was also presented. This design has as
its experimental points the vertices of the 4-dimensional analogues of a cube,
a truncated cube and two octahedra of different dimensions.

9. Acknowledgement. The authors express their gratitude to the referee who
called their attention to the theorem of Bose and Carter and suggested the
proofs given in Section 3. As a result, Section 3 was shortened and considerably
improved.
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