CORRECTION NOTES

CORRECTION TO "GENERALIZATIONS OF A GAUSSIAN THEOREM"

BY PAUL S. DWYER

University of Michigan

The following correction should be made to the paper cited in the title (Ann. Math. Stat., Vol. 29 (1958), pp. 106-117). The letters e and ϵ appear interchangeably in sections 8 and 9. The values they represent are really the values of ϵ with $\theta = \theta^*$. Accordingly it would be much better if the ϵ at the beginning of the second sentence of section 8 on page 113 were replaced by $e = A\theta^* - x$, and each remaining ϵ in section 8 and section 9 were changed to e. I am indebted to M. M. Rao who called this to my attention.

CORRECTION TO AND COMMENT ON "EQUALITY OF MORE THAN TWO VARIANCES AND OF MORE THAN TWO DISPERSION MATRICES AGAINST CERTAIN ALTERNATIVES"

By R. GNANADESIKAN¹

The Procter & Gamble Co.

This note is motivated by a desire to clarify certain points in my paper [1]. In Section 4 of [1], the region of acceptance, (4.3), of a test for the null hypothesis $H_0: \Sigma_1 = \Sigma_2 = \cdots = \Sigma_k = \Sigma_0$ is in error. The central result, which should have been emphasized, was (5.5) of [1] which, of course, is an exact probability statement with preassigned probability $1 - \alpha$. Starting from (5.5), however, one obtains as the implied acceptance region for H_0 not (4.3), but the following intersection region:

(A)
$$\frac{c_{\max}(S_j)}{c_{\min}(S_0)} \ge \lambda_{j1} \quad \text{and} \quad \frac{c_{\min}(S_j)}{c_{\max}(S_0)} \le \lambda_{j2}, \qquad j = 1, 2, \cdots, k,$$

where

$$\lambda_{j1} < \lambda_{j2} \quad \text{and} \quad \frac{c_{\min}(S_j)}{c_{\max}(S_0)} \leqq \frac{c_{\max}(S_j)}{c_{\min}(S_0)}.$$

Since (A) is obtained by implication from (5.5) of [1], it is, of course, true that this acceptance region will have a probability under the null hypothesis of at

¹ Now with the Bell Telephone Laboratories, Inc., Murray Hill, New Jersey.