NOTES

NOTE ON THE DISTRIBUTION OF LOCALLY MAXIMAL ELEMENTS
IN A RANDOM SAMPLE!

By MARsHALL FREIMER AND BERNARD GoOLD

Lincoln Laboratory, Massachusetts Institute of Technology

Glasgow’s formula for the second factorial moment of this distribution [1] is
considerably more complicated than it need be. We have elsewhere [2] and (3]
obtained a formula requiring just one summation, over the fixed range
0 < s £ h — 1, thus eliminating the summation over the ever-increasing range
0 = s =< m. .

Following Glasgow’s notation, let 8 be the number of locally k-maximal
elements in a permutation of the first n integers. Our formula, for the variance
of B, is

var (8) = (n + 1)Cs, .n = 2k,

where

_ _—2k(5k+3) 8 ’f 1
T @k+DE+1D): k1 =Sk+s+2°

Using the expected value of 8 given in [1], we find that
E(B®,n) = var (8) + E(B)(E(B) — 1)
= (n+ 1)C+ (2n — k+ 1)(2n — 2k)/(k + 1)*

Both referees have pointed out that Glasgow’s formula can be reduced to
ours. In fact, the summation in his equation (3.8) can be performed, yielding

2(m + 1) (7K' + 10k + 3 + 4km + 2m)
(k4 122k 4+ 1)2k + m + 2)
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