ERGODOCITY OF QUEUES IN SERIES!

By J. Sacks

Columbia University

1. Introduction. We are interested here in determining when a queueing system
consisting of several queues in series is ergodic. To define what is meant by queues
in series let us consider the case where there are two servers. The definition of
two queues in series is given as follows: The nth individual arriving to the queue-
ing system enters, at his time of arrival, a queue (queue 1) in front of the first
server. He waits there until all the individuals in front of him have been served
in the first server at which time he begins his service. Upon completion of his
service the nth individual enters a queue (queue 2) in front of the second server,
waits there until all the individuals in front of him have completed their service
in the second server, and at that time he begins his own service. Queue 1 and
queue 2 are now said to be in series. Putting matters more concisely we can say
that two queues are in series if the output of the first queue is the input of the
second queue.

To define what we mean by the ergodicity of this queueing system, let W,
be the waiting time in queue 1 of the nth individual and let W denote his wait-
ing time in queue 2. The queueing system is said to be ergodic if the joint dis-
tribution of (W,, Wa) converges, as n — w, to a probability distribution.
Assuming existence of first moments for the two service time random variables
and the interarrival random variable (the sequence of interarrival time random
variables is assumed to be a sequence of independent and identically distributed
random variables and the same is assumed for each of the two sequences of
service time random variables) we are able, in Theorems 1 and 2 below, to char-
acterize when {(W, , W)} has a limiting probability distribution.

The method we use to characterize ergodicity is first to show (Lemma 2 below)
that the distribution function of (W, , W:) converges to a limit as n —
though the limit may not be a probability distribution function. This is the easy
part of the argument. The second part of the argument is to show under ap-
propriate conditions (see Theorem 1) that (W, , W:) is bounded in probability
so that as n — « no probability escapes to infinity and this yields the fact that
the limit shown to exist in the first part is a bonafide probability distribution.
The last part of the characterization lies in showing that when the conditions
for Theorem 1 are not satisfied then either W, or W goes to + « in probability
(Theorem 2). This outline of the argument is quite the same as the outline of
the argument used by Kiefer and Wolfowitz [3] for the queueing system they
consider. The details of the first part are strongly related to those in [3]. The
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580 J. SACKS

means whereby the second and third parts of the argument are accomplished
depends on knowledge of the behavior of the maximum of partial sums of inde-
pendent and identically distributed random variables. This was first utilized by
Lindley [4] in his treatment of the one server queueing system.

Burke [2], Reich [5] and others (see [2] and [5] for other references) have con-
sidered queues in series when the service time random variables and interarrival
random variables are exponentially distributed. Akaike [1] considers a problem
of ergodic behavior of queues in series related to the one we treat here. Akaike
assumes that all the random variables in sight take on values which are integral
multiples of some fixed positive number so that the waiting time process is a
discrete process (our random variables have no such restriction). Furthermore
he assumes that the nth customer cannot enter the second queue before customer
n -+ 1 arrives at the first queue; thus if customer » finishes service at server 1
before n + 1 arrives, customer n must wait until customer n + 1 arrives before
entering the second queue. Our assumptions are that the nth customer enters the
second queue immediately after finishing service at server 1.

We have only talked about the case of two servers which gives rise to two
queues in series. It is simple to see how to define s queues in series when there
are s servers—this giving rise to s different waiting times to worry about. All our
previous remarks for the two-server case are valid for the s-server case. We have
separated the treatment of the two-server case from that of the s-server case in
order to avoid confusing notational problems with the principal ideas.

2. The Two-Server Case. In this section we will consider the case where there
are two queues in series, the output of the first queue being the input to the
second queue.

Let 7, be the time at which the nth individual enters the system. Let R, de-
note the service time in the first server of individual » and let p, be the service
time of individual n in the second server. Let gny1 = 7aya — 7n. We assume
that each of the three sequences {R,;n = 1}, {g.;n = 2}, {pn;n = 1} isa
sequence of independent and identically distributed random variables and that
the three sequences are mutually independent. Furthermore we assume that the
R.’s, ¢g.’s, and p,’s are non-negative random variables and that ER, < o,
Eg, < 0, Ep < o,

Let W, be the waiting time in the first queue of the nth person and let W
be the waiting time in the second queue of the nth person. The waiting time,
of course, is the time between arrival at the queue and the beginning of service.
To establish a relationship between (W, , W,) and (W4, Wa1) observe that
the nth individual leaves the first server (enters the second queue) at time
7n + W + Rn and leaves the second server at time 7, + Wn + Rn + Wi + pa ,
while the (n 4+ 1)th individual arrives at the first queue at time 7,4, and at
the second queue at time 7,41 + Waya + Rapa. Thus the (n 4 1)th person
waits 0 time in the first queue if 7, + W, + Ry £ Tapr ie., if W + R, —
g1 < 0, and waits W, + R, — g if the last quantity is positive. Stated
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more concisely

(2.1) Wi = max [0, Wo + Rn. — gyl

Similarly,

(2.2) Wiy = max [0, Wa + pn — Russ + Ro — gns1 + Wa — Wasdl.

(2.1) and (2.2) are valid for all » = 1 with Wy = Wi = 0.

Let Z, = (W,, W ). {Z,} is not a Markov process but putting ¥, = (Z,, R.)
provides us with a sequence {Y,} which is a Markov process with stationary
transition probabilities. These considerations will enable us to prove Lemma 2
below which is the first step in characterizing when {Z,} is an ergodic process.

Let t = (hi, &), * = (x1, x2) with &, &, 21, 22 all nonnegative numbers.

Lemva 1: P{Z, S t|Z, =2, R =1} < P{Z, £ t|Z, = 0, R, = r} forall
n, x, i, r. )

Proor: Fix a point w in the sample space of Rz, -+ , Ru, g2, - y0n, P, """
pn_1, and let

Wiw, z) = 1, Wiw, z) = 2
Wi(w, z) = max [0, Wia(w, z) + Bja(e) — gi(0)]
Wi(w,2) = max [0, Wia(w, 2) + pia(e) — Ri(w) + Ria(w) — gi(w)
+ Wiale, z) — Wile, 2)],
for 2 £ j £ n. It is clear that W;(w, 0) < W;(w, ) for each j. Observing that
R;-1(0) + W;aa(w, 2) — W;(w, 2)
= R;.1(w) + W;_i(w, 2) — max [0, W;_1(w, 2) + Rj1(w) — gi(w)]
= min [W,_1(w, 2) + R;a(w), gi(w)],
we have
Wi (w, z) = max [0, Wi_i(w, ) + pj—1(w) — Ri(w) — gi(w)
+ min [W;_1(w, z) + R;_1(w), g;(w)]]

and it follows easily that W7 (w, 0) < W3 (w, z) forall 2 < j < n. Lemma 1
is now seen to be true.

LemMma 2: P{Z, < t|Z, = 0} — F(t) as n — « where F is a two-dimensional
distribution funcition whose variation over two-dimensional space may be less than
one i.e., F may not be a probability distribution function.

Proor: Let H(z, r) = P{Z; < z, Ry < r|Z, = 0}. Then

P{Z,,.H b tlZ], = 0}

(2.3)
= fP{Zn-l-l =< tlZz = x,Rz = T,Z], = 0} dH(x,r).

Since {Y.} (Yn = (Za, R,)) is a stationary Markov process and because of
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Lemma 1
P{Zn+1 = tlzz = x,Rz= r, Z, = 0}
= PlZ, = t|Zy =2, R =1 £ PlZ.<t|Z=0,R =1}

Let H* be the distribution function of R; and, therefore, of R,. Then, using
(2.4) in (2.3), we have

(2.4)

PiZui S tZ=0) < [ P(Z, < 112, = 0, Ry = 1} dH (s, 1)
- fP{Z,. < t|Z = 0,R = r} dH*r) = P{Z, < t|Z: = 0}

Thus P{Z, = t|Z, = 0} is a monotone sequence and therefore converges to a
limit which we call F(¢). The above-mentioned properties of F are easily deduced.
THEOREM 1: If Eg. > max (ER:, Ep;) then F (defined in Lemma 2) is a
probability distribution.
Proor: Because of Lemma 2 we need only show that, under the condmons
stated here, {Z.} is bounded in probability, i.e., for all n

(2.5) P{Z, =t|Z, =0} 21— q(t)

where 7(¢) — 0 as ¢ — . If we can prove that {W,} and {W?2} are each bounded
in probability then (2.5) will be established. Lindley [4] has shown that {W,} is
bounded in probability so it remains only to consider {W3}.

Forj=1,2 ---let

j

(2.6) S; = ; (R: — giv1)
and let S = 0. By iterating (2.1) and using the fact that W; = 0 we have
(2.7) Wi = max [S, — Sj].
0<j<n
Hence
28) Ri—gwn+Wo=Rn—gupn+ max [S,5— S;]= , Inax [S» — S,
0<jgn-1 <jign-1
Fork = 0, let
(2.9) B, = max (—38;).
0<j=<k

Then (2.7), (2.8), and (2.9) yield

(2.10) Ri— gnyn+ Wo — Wapu = Baoy — Ba.
Using (2.10) in (2.2) gives

(2.11) Wry = max [0, Wa + pn — Ruys + Bay — Bl
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Put
k
(2.12) Te= 2. (pi — Ripy) for k=1 and To=0.
faml
Tterating (2.11) (use Wi = 0) we have
(2.13) W%, = max [T, — Ty + By — Bl
0<sk=n
= max [T, — Tx + max (—8;) — Ba]
0gkzn 0<j<k
= max [T,— Ty — S;— Bl
0<jgksn

Let ¢ = 0 (we shall specify e later). Then
WEti= max [T.—Ti— (n —k)e+ (n — k)e — S; — Bi]

0<j<skzsn

(214) < max [T.— Ti— (n — k)l + max [(n — k)e — S; — Ba]
0<jsksn

0<igksn =
= max [T, — Tw — (n — k)¢l + max [(n — j)e — S; — Bal.
0<k<n 0<isn

Define £; = p; — Riy1 — e and let Uy = D iz £ . Thus Uy is the kth partial
sum of independent and identically distributed random variables. Then

(2.15) max [T, — Tx — (n — k)] = max (U, — Up) = A (say)
0<k<n 0<k<n

has the same distribution as maxo<i<n Ui . If € is such that
(2.16) Eoy — ERy — <0
then, it is well known, maxo<i<n Ux — a finite random variable with probability

one (w.p.1) which implies that {A.} is bounded in probability.
Observe that B, = maxXo<j<n (—8;) = —S.. Hence

(2.17) max [(n —j)e— S; — B < max [S, — S;+ (n —j)e] = Ca (say).
0=izn 0sisn

Let V; = Zf_l (R; — gixa + €). Then V; is the jth partial sum of independent
and identically distributed random variables. Thus, as before, C, has the same
distribution as maxo<;<a V; and, if € is such that

(2.18) ER, — Egz + e < 0,

then {C,} is bounded in probability. Since Wi < A, + C, we have only to
verify that e can be chosen to satisfy (2.16) and (2.18) in ordgr to conclude
that {W3} is bounded in probability.

If Ep, < ER, then the choice ¢ = 0 gives (2.16) and the condition of the
Theorem guarantees (2.18). If Ep, = ER, take

e = [(Epm + Eg2)/2] — ER,
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¢ is clearly positive and (2.16) and (2.18) are satisfied because Eg; > Ep; .
This concludes the proof of Theorem 1.

Theorem 2 which we now prove shows the necessity of the condition of Theo-
rem 1 when first moments are assumed to exist.

TaeorEM 2: (a) If ER, = Eg, then F(t) =
(b) If Epy = Egs then F(t) = 0.

Proor: (a) is due to Lindley [4] who proved that, in this case, W, — +
in probability. For (b) we might as well assume in addition that ER: < Eg.
otherwise we can use (a).

If ER, < Eg. then
(2.19) -8, — B, = — max [S, — §j]

0<j<n
is bounded in probability. From (2.13)
(2.20) Wi = max [T, — T — S; — B,
0</<ks=n

= max [To+ So—Tr— 8S;] — 8w — Ba.

0<isk<n
Now, recalling that B; > 0 w.p.1,
max [T, + 8. — Tx— S;] = max [T, + S, — T — Sil

0<j<k=n 0<k<n

(2.21) = Inax l: Z (pi — gir1) + Bry1 — Rua

o<k<n Li=k+1
= max [Z (pi — g.~+1)] — Baa
=

0gk<n | i=k+1

{Ra.41} is, of course, bounded in probability but, because Epy — Eg»

)

(2.22) max [ > (o — g,~+1):| — 4o in probability.

0<kgn | i=kt1
(2.22), (2.21) and (2.19) show that W:“ — 4 o in probability which proves
that F(t) = 0. This proves Theorem 2.

It is interesting to note that if ER, = Eg, and Ep, < ER, then, although
W. — =+« in probability, Wi has a legitimate limiting distribution. This is
because we can show (as in Lemma 2) that P{Wx < t|Z, = 0} has a limit
and because of (2.13)

Wi < max [T, — T + max [B; — B.]
0<k<n 0<k=n

= max [T, — T4

0<k<n

which is bounded in probability.
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Just as in Kiefer and Wolfowitz [3] we can write down an integral equation
for the limiting distribution of Y, . Under the conditions of Theorem 1 this
integral equation will have a unique probability distribution as a solution. The
uniqueness argument in [3] is rather delicate but in this problem the difficulty
is easily disposed of because of the ease in seeing (by means of (2.13) for exam-
ple) that the limiting distribution must be independent of the starting point

(Wl ) Wl)

3. The s-Server case. The question of ergodicity in the case of s servers can
be handled in essentially the same fashion as in Section 2 where we had 2 servers.
We shall be brief in those places where the generalization of the ideas in Section
2 is transparent.

For ¢ = 1, ---, s let R be the service time in server o of the nth person.
Let Ry.1 = 7ay1 — 7o Where 7, is the time at which the nth person arrives to
the first queue. Let & = R — R%51, 0 = 1, ---, s. Let W7 be the waiting
time in the oth queue of the nth person. It is easily verified that, foralll < p < s,

p—1
(3.1) Wn-l—l max [0 Wp + tp + Z [tn + W - Wn+l]]

o=1
Let T7 = D %t7and let DY = max*[—Tj, — -+ — T7,) where max* is maxi-
mum over all0 £ j; < -+ Zj, < k. Let H}, = E,.,l ta + Wa — Wail. To

obtain a manageable expression for W5, we will show that H, = Ds_; — D3
for all p, n. Observe first that this is true when » = 1 and all n. Assume now
that H2 = D%_, — D2 for all n. We will show that H2*' = D2} — D2* for

all n.
From (3.1), the induction hypothesis, and iteration

(3.2) WEH = max[0, WET 4+ 21 + HP] = max [0, Wi 4+ 121 4 DE_;, —Df)
= max [TII:-H _ P+1 + DII — Dlzc’]

05i <k
Hence, using (3.2) fork = n — 1l and k =
7+ WRT = Wi = 27 + max [T75 — TP + D} — DRl

0gign—-1

— max [Tz-H _ P+l ‘+‘ Dp - DP]

0<jgn
= max [-T?" 4 D?| — max [—T?" + D?]
0<jign—1 0<j<sn

+ D% — D%, = DY} — DY + D% — D%,
Thus
H2P = 37 - Wit — Wil + HE = D3Y — DIt

which is what we wanted to show. Since H% is what we say it is (3.2) is valid
for all k and p (of course since there are only s servers we have no use for W§

where p > s).
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Returning to (3 1) we remark that it is easy to verify just as in Section 2
that Y, = (Wn,---, W&, RL, .- , R3) is the nth random variable in a
stationary Markov process and that

(3-3) P{W];z§a1,°°',W:t§ale;=O)‘7= 1"”’8}_)F(a1)"')a3)

where F is an s-dimensional distribution function but not necessarily a proba-
bility distribution function.

Let u, = ER} co=20,1, ---,s.

TrEOREM 3: If
(3.4) max u, < o

1<o<s
then F is a probability distribution.

Proor: As in Theorem 1 we only have to show that each { W3} is bounded in
probability. It is easy to see by a trivial induction argument that we only have
to verify that {W3} is bounded in probability. Actually the argument we give
is legitimate when s is replaced by p for any 1 < p =< s. In any case we will
only consider {Wh}.

To begin with observe that

(3.5) -Di'ETh A4 - + T

Hence from (3.2) with bk =n,p = s — 1

(3.6) Wiy < max [Th + -+ + T4 — T3 + DI
0<j<n

= max (T% — T3, + -+ + Trn — Tl

0<j1=<:++Sds=<n
Let so = sand define s; to be the largest ¢ < ;3 (¢ = 0) with the property that
(37) Mo — Msg_y > 0.

o = 0 satisfies (3.7) because of (3.4) so that s; is well-defined. Let & be the
first ¢ such that s; = 0. Then it is easy to check that

(3.8) MO = Ms > Mog_y >ttt D sy = s
and that for s; < ¢ < 8;
(39) 1224 = Msg_q < Msgie

Define, for7 =1, --- , k,

Ui = max [,Z_: - T,,)]

0</15++Sdy<n

+
= max I: - T;U)].
0<Jjs, 415" <h

k3 l

(3.10)



ERGODICITY OF QUEUES IN SERIES 587

Because of (3.6) we have
(3.11) Won S Un+ -+ + Ul

and, therefore, in order to show that {W=.} is bounded in probability, we have
only to verify that each Un(i = 1, ---, k) is bounded in probability.

The verification that each U, is bounded can be summarized in the following
lemma.

Lemma: Form = 1, -+, M let {X7,7 = 1, -+ -} be a sequence of independent
and identically distributed random variables with
(3.12) EXT = A — Am
where
(3.13) M > Ay = max A, > min), = 0.
0<a< M 0<a<M

(It is not assumed that { X7} and {X™} are independent of one another). Let Sy =
Sk L XT and let Y = max* [D sy (Sn — S7.)] where max* is mazimum over
all 1, ,juwith0 < 51 £ -+ = ju = n. Then ¢, is bounded in probability.

It is easy to verify that Uj can be taken as ¥, and that the conditions of the
lemma are satisfied ((3.9) giving (3.13)) so that the proof of the lemma is the
last step in proving Theorem 3.

ProoF oF LEMMA: Let ¥ = min’ [\; — \;] where min’ is minimum over all
0=<47=< Mwith\; — X\; > 0. Let § = v/M. § is, of course, strictly positive.
For2 <m < M define €n = Ay — Ama + (M — m + 1)6 and let €4y = 0
and ¢ = 0. Then

(3.14) €, -+, €x are positive,

(3.15) Am = Am1 + €mp1 — €m = —9, 2
(3.18) M — N+ e=Au— N+ [(M —1)/Myy < (—1/M)(No — Aa) <
Letting ju+1 = n and taking note of the fact that ex41 = 0 we have

I\
A

m=M
0.

M
(3.17) ﬂg [(n = jmi)empn — (0 — Jm)em] = 0
where 0 < 1 £ /2 £ -+ £ ju = jun = n. Now, using (3.17),

Vn = max* [m; (8% — S5, + (1 — jmp)empn — (0 — jm)ém):l

(3.18) < Z_:lmax* ISn — ST, 4+ (n — jmi)emtr — (N — jJm)em]

M

< >, max [Sh — S, + (n — jm) (ens1 — )]

m=1 0€jp<n

Each of the terms in the summation on the right hand side of (3.18) is bounded
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in probability since

max [S7 — 8%, + (n — jm)(emn — €n)] = max [& — &]
0<jmsn 0<k=n

where & = D 51 (X7 + emys — €n) and E(Xi + emp1 — €m) < 0 due to
to (3.15) and (3.16). This concludes the proof of the lemma and, therefore, the
theorem.

THEOREM 4: If maXi<s<s e = o F 15 identically 0.

Proor: Letting p be the first ¢ > 1 with u, = o we need only show that
W3 — + « in probability. Using (3.2)

?w = max [T2 — T? + D! — D7)

0<j<n
4 b4 p—1 1 -1
= max [Th—-T;,—-T7_,— - —"Ti—Di]
(3 19) 0<71<- - pSn
. 1 D 1
= max [Ta+ - +Ta—T5,— - —Til
0S71<- - Sipsn

- max [Th+ -+ T2 =T;— - —THL
0<i1S- - Sipsn
The last term on the right hand side of (3.19) is bounded in probability because
MAX 10 <p1 b < po - Looking at the first term on the right hand side of (3.19)
we have

max ("4 e+ Th— T2 — - — T}
0Si1S- - -SipSn

max [ i Zp: (R} — R ]

0<k=zn |_j=k+1 o=1
= 2 1 1
0 — —
= max |: > (R? — R) + > (Rizi — Ruih ]
osk<n | j=Ft1 =1

n yd

> max [ >, (R? — R(})] — > R
0<ksn L i=k+1 o=1

The last term written is bounded in probability while the preceding term goes

to 4+ in probability because u, = po. It is then quite clear that W7, must

go to 4 o in probability.
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