ON A THEOREM OF RÉNYI CONCERNING MIXING SEQUENCES OF SETS

By J. H. Abbott and J. R. Blum

University of New Mexico and Sandia Corporation

I. Introduction. Let Ω be a set and α a σ -algebra of subsets of Ω . Let P be a probability measure defined on α , i.e., P is a non-negative completely additive set function defined on α with $P(\Omega) = 1$. Let α be a number with $0 \le \alpha \le 1$ and let $\{A_n, n \geq 1\}$ be a sequence of sets. (We shall assume from now on that every set under discussion is an element of a.) We shall say that the sequence $\{A_n\}$ is strongly mixing with density α if for every set B we have

$$\lim_{n} P(A_n \cap B) = \alpha P(B).$$

Concerning such sequences, Rényi [1] has proved a result which we state here as Theorem 1 (Rényi). Let $\{A_n, n \geq 1\}$ be a strongly mixing sequence of density α and let Q be a probability measure defined on α such that Q is absolutely continuous with respect to P. Then $\lim_{n} Q(A_n) = \alpha$.

In Section 2 we prove some preliminary results and then show that the condition of absolute continuity of Q with respect to P may be replaced by a weaker condition. In Section 3 we apply this result to obtain limit distributions for normed sums of certain sequences of dependent random variables.

II. Generalization of Rényi's Theorem. Let P and Q be probability measures on the measurable space (Ω, α) . In the following \mathcal{B}_i , $i = \infty, 1, 2, 3, \cdots$, is a σ -subalgebra of α , and P_i and Q_i are the restrictions of P and Q to α_i . It is well known from the Lebesgue decomposition theorem that there is a singular set $B_i \in \mathcal{B}_i$ of Q_i relative to P_i with $P_i(B_i) = 0$ and such that for any $A \in \mathcal{B}_i$, $P_i(A - B_i) = 0$ implies that $Q_i(A - B_i) = 0$; i.e., relative to P_i , Q_i is singular on B_i and absolutely continuous on the complement B_i^c of B_i .

Lemma 1. If $\mathfrak{G}_1 \supset \mathfrak{G}_2$, then $(P+Q)(B_2-B_1)=0$. Proof. Since $P(B_2)=0$, then $P(B_2-B_1)=0$. Now $B_2 \in \mathfrak{G}_1$, hence

$$Q(B_2 - B_1) = Q_1(B_2 - B_1) = 0.$$

LEMMA 2. Let $\mathfrak{G}_1 \supset \mathfrak{G}_2 \supset \cdots \supset \mathfrak{G}_{\infty} = \bigcap_n \mathfrak{G}_n$. Q_{∞} is absolutely continuous with respect to P_{∞} if and only if $\lim_{n} Q(B_{n}) = 0$.

PROOF. It follows from Lemma 1 that $Q(B_{\infty}) \leq Q(B_n)$ for every n. Thus if $\lim_{n} Q(B_n) = 0$, then $Q(B_{\infty}) = 0$ and Q_{∞} is absolutely continuous with respect to P_{∞} . Conversely we have $Q(\lim_n \sup B_n) = 0$ since $P(B_n) = 0$ for every n and $\lim_n \sup B_n \in \mathcal{B}_{\infty}$. Consequently $\lim_n Q(B_n) = 0$.

We can now generalize Rényi's theorem to obtain

Theorem 2. Let $\{A_n, n \geq 1\}$ be a strongly mixing sequence of density α with

257

Received September 10, 1960.

respect to P. For each positive integer n let \mathfrak{G}_n be the minimal σ -algebra containing the sets A_n , A_{n+1} , \cdots , and let \mathfrak{G}_{∞} be $\bigcap_n \mathfrak{G}_n$. If Q is a probability measure on \mathfrak{G} such that Q_{∞} is absolutely continuous with respect to P_{∞} , then $\lim_n Q(A_n) = \alpha$.

PROOF. For each positive integer n let B_n be the singular set in \mathfrak{S}_n of Q_n relative to P_n , and choose n so large that $Q(B_n) < \epsilon$, where ϵ is an arbitrary positive number. For every positive integer m we have

$$Q(A_m) = Q(A_m \cap B_n^c) + Q(A_m \cap B_n) = Q(B_n^c)Q'(A_m) + Q(A_m \cap B_n),$$

where Q' is the probability measure defined by $Q'(A) = Q(A \cap B_n^c)/Q(B_n^c)$. Clearly Q' is absolutely continuous with respect to P when both are confined to \mathfrak{B}_n , and it follows from Rényi's theorem that $\lim_m Q'(A_m) = \alpha$. The theorem follows.

By strengthening the hypothesis, we may obtain a considerably stronger conclusion for arbitrary decreasing sequences of σ -algebras.

THEOREM 3. Let $\mathfrak{G}_1 \supset \mathfrak{G}_2 \supset \cdots \mathfrak{G}_{\infty} = \bigcap_n \mathfrak{G}_n$ be an arbitrary decreasing sequence of σ -subalgebras of \mathfrak{G} , and Q be a probability measure on \mathfrak{G} . Then $Q_{\infty} = P_{\infty}$ if and only if $\lim_n (Q_n - P_n) = 0$ uniformly over \mathfrak{G}_n .

PROOF. If $\lim_n [Q_n - P_n] = 0$ uniformly over \mathfrak{B}_n then clearly $Q_\infty = P_\infty$. Conversely assume that this is the case. Let $\mu = Q - P$ and for each positive integer n let C_n be the Hahn set for μ in \mathfrak{B}_n , i.e., $\mu(C_n) = \sup_{C \in \beta_n} \mu(C)$. Now if $B \in \mathfrak{B}_n$ it can easily be seen that $\mu(B) \leq \mu(C_n \cup B)$. Suppose now there exists $\epsilon > 0$ and an infinite sequence $\{k_n\}$ of integers such that $\mu(C_{k_n}) \geq \epsilon$. From the remark above it follows that $\mu(C_{k_1} \cup C_{k_2}) \geq \mu(C_{k_2}) \geq \epsilon$. Similarly

$$\mu(C_{k_1} \cup C_{k_2} \cup C_{k_3}) \geq \epsilon,$$

etc. Thus $\mu(\bigcup_{j=1}^{\infty} C_{k_j}) \geq \epsilon$ and by the same argument $\mu(\bigcup_{j=n}^{\infty} C_{k_j}) \geq \epsilon$ for every n. Hence $\mu(\lim_n \sup C_{k_n}) \geq \epsilon$. But $\lim_n \sup C_{k_n} \varepsilon \otimes_{\infty}$ and by hypothesis μ vanishes on \otimes_{∞} , which is a contradiction. The same argument applies to the set function P - Q, and the theorem is proved. For the application we have in mind we shall need a result which is an immediate consequence of Theorem 3.

COROLLARY. Let $\{\mathfrak{G}_n, n \geq 1\}$ be a sequence of σ -algebras with $\mathfrak{C} \supset \mathfrak{G}_1 \supset \cdots$, and let $\mathfrak{G}_{\infty} = \bigcap_n \mathfrak{G}_n$. Let Q be a probability measure on \mathfrak{C} and let $\{A_n, n \geq 1\}$ be a sequence of sets. Suppose for each positive integer k there exists a sequence of sets $\{A_{n,k}, n \geq 1\}$ with $A_{n,k} \in \mathfrak{G}_k$ for n sufficiently large such that

$$\lim_{n} [P(A_{n,k}) - P(A_n)] = \lim_{n} [Q(A_{n,k}) - Q(A_n)] = 0.$$

Then if $Q_{\infty} = P_{\infty}$ we have $\lim_{n} [P(A_n) - Q(A_n)] = 0$.

III. Application. Let $\{X_n, n \geq 1\}$ be a sequence of real random variables and let P be the probability measure defined on the Borel sets of infinite-dimensional Euclidean space induced by the finite-dimensional distributions of the process $\{X_n\}$. For each positive integer n let \mathfrak{G}_n be the smallest σ -algebra of Borel sets with respect to which the random variables X_n , X_{n+1} , \cdots , are measurable. The sequence $\{\mathfrak{G}_n\}$ is then decreasing and we define $\mathfrak{G}_{\infty} = \bigcap_{n} \mathfrak{K}_n$. Let $\{a_n, n \geq 1\}$

be a sequence of real numbers and let $\{b_n, n \geq 1\}$ be a sequence of positive numbers with $\lim_n b_n = \infty$. For each integer n define the set $A_n(x)$ by

$$A_n(x) = \{(S_n/b_n) - a_n \le x\}$$

where x is an arbitrary real number and $S_n = \sum_{i=1}^n X_i$.

Now suppose Q is the probability measure induced by the finite-dimensional distributions defined by

$$Q(X_{i_1} \leq a_1, \dots, X_{i_k} \leq a_k) = \prod_{i=1}^k P(X_{i_i} \leq a_i).$$

Assume now that there exists a probability distribution F(x) such that

$$\lim_{n} Q[A_{n}(x)] = F(x)$$

for every x which is a continuity point for F(x). We shall be interested in conditions on P such that $\lim_n P[A_n(x)] = F(x)$ at continuity points of F(x). As we shall show consequently this will in fact follow from the condition $P_{\infty} = Q_{\infty}$. Thus we first prove

Theorem 4. Suppose for every $\epsilon > 0$ there exists a positive integer n_o depending only on ϵ , and suppose that for every choice of nonnegative integers i_1, \dots, i_k with $n_o \leq i_1 < \dots < i_k$ there exists a k-dimensional probability measure R which may depend on ϵ , n_o , and k, such that for every k-dimensional rectangle

$$\{a_1 < x_1 \leq b_1, \cdots, a_k < x_k \leq b_k\}$$

we have

$$|P(a_1 < X_{i_1} \le b_1, \dots, a_k < X_{i_k} \le b_k) - \prod_{j=1}^k P(a_j < X_{i_j} \le b_j)|$$

 $< \epsilon R(a_1 < x_1 \le b_1, \dots, a_k < x_k \le b_k).$

Then $P_{\infty} = Q_{\infty}$.

PROOF. Let $\epsilon > 0$ and choose n_o accordingly. Let $\mu = P - Q$. Then if S is a finite-dimensional rectangle in \mathfrak{G}_{n_o} it follows from the hypothesis that there exists a probability measure R such that $|\mu(S)| < \epsilon R(S) \le \epsilon$. Now let

$$\{S_m, m \geq 1\}$$

be a sequence of disjoint rectangles in \mathfrak{B}_{n_o} of uniformly bounded dimension and let $S = \bigcup_m S_m$. Then we may choose a probability measure R for which

$$|\mu(S_m)| < \epsilon R(S_m)$$

simultaneously for each m, and it follows from the complete additivity of μ and R that $|\mu(S)| \leq \epsilon$. Now if A is a finite-dimensional cylinder set in \mathfrak{G}_{n_o} and if δ is a positive number there is a set S which is the union of a denumerable number of disjoint rectangles of uniformly bounded dimension such that

$$|\mu(A-S)|+|\mu(S-A)|<\delta.$$

Consequently $|\mu(A)| \leq \epsilon + \delta$. If B is an arbitrary set in \mathfrak{B}_{n_o} we may approximate it arbitrarily closely by finite-dimensional cylinder sets and consequently $\lim_n \sup_{B \in \mathfrak{B}_n} |\mu(B)| = 0$. The theorem follows from Theorem 3.

Now let $\{X_n, n \geq 1\}$ be a stochastic process satisfying the conditions of Theorem 4. Define the sets $A_{n,k}(x)$ for $k = 2, 3, \dots$, and $n \geq k$ by

$$A_{n,k}(x) = \{ [(S_n - S_{k-1})/b_n] - a_n \le x \}.$$

Then if x is a continuity point of F(x) it is easily verified that

$$\lim_{n} [Q(A_{n}(x)) - Q(A_{n,k}(x))] = 0$$

for every k, and obviously $A_{n,k}(x) \in \mathcal{B}_k$. It follows from Theorem 3 and Theorem 4 that $\lim_k \left[P(A_{n,k}(x)) - Q(A_{n,k}(x)) \right] = 0$ uniformly in $n \geq k$. From this it is again easy to verify that $\lim_n \left[P(A_n(x)) - P(A_{n,k}(x)) \right] = 0$ and we obtain $\lim_n P(A_n(x)) = F(x)$.

We summarize in

Theorem 5. Let $\{X_n, n \geq 1\}$ be a stochastic process satisfying the conditions of Theorem 4. Let F(x) be a distribution function and suppose

$$\lim_{n} Q((S_n/b_n) - a_n \le x) = F(x)$$

at every continuity point of F(x). Then $\lim_{n} P((S_n/b_n) - a_n \leq x) = F(x)$ at such continuity points.

Révész, [2], arrived at the conclusion of Theorem 5, using conditions somewhat stronger than those imposed by Theorem 4. However, his derivation is incorrect, since he concludes that under his conditions P is absolutely continuous with respect to Q. The following simple example shows that this is in fact not the case. Let Q be the probability measure corresponding to the stochastic process $\{X_n, n \geq 1\}$ where the X_i are independent identically distributed random variables with mean zero, variance one, and continuous distributions. Let P be the probability measure corresponding to the process $\{Y_n, n \geq 1\}$ where

$$Y_1 = Y_2 = X_1$$
, $Y_n = X_n$ for $n > 2$.

Then P is not absolutely continuous with respect to Q since

$$Q(x_1 = x_2) = 0 = 1 - P(x_1 = x_2).$$

However, it is easily verified, that the conditions of Révész's theorem apply to the process $\{Y_n\}$. Actually his conditions imply that $P_{\infty} = Q_{\infty}$ and consequently his theorem remains valid.

REFERENCES

- [1] A. Rényi, "On mixing sequences of sets," Acta Math. Acad. Sci. Hung., Vol. 9 (1958), pp. 215-228.
- [2] P. Révész, "A limit distribution theorem for sums of dependent random variables," Acta Math. Acad. Sci. Hung., Vol. 10 (1959), pp. 125-131.