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I. Introduction. Let Q@ be a set and @ a s-algebra of subsets of . Let P be a
probability measure defined on @, i.e., P is a non-negative completely additive
set function defined on @ with P(2) = 1. Let a be a number with 0 < a £ 1
and let {4, ,n = 1} be a sequence of sets. (We shall assume from now on that
every set under discussion is an element of @.) We shall say that the sequence
{A,} is strongly mixing with density o if for every set B we have

lim, P(A. N B) = aP(B).

Concerning such sequences, Rényi [1] has proved a result which we state here as

TaeorEM 1 (Rényi). Let {A,, n = 1} be a strongly mizing sequence of density
a and let Q be a probability measure defined on @ such that Q is absolutely continuous
with respect to P. Then lim, Q(A4,) = .

In Section 2 we prove some preliminary results and then show that the con-
dition of absolute continuity of @ with respect to P may be replaced by a weaker
condition. In Section 3 we apply this result to obtain limit distributions for
normed sums of certain sequences of dependent random variables.

II. Generalization of Rényi’s Theorem. Let P and @ be probability measures
on the measurable space (2, @). In the following ®;,7 = «,1,2,3,---,isa
o-subalgebra of @, and P; and Q; are the restrictions of P and @ to ®; . It is well
known from the Lebesgue decomposition theorem that there is a singular set
B; € ®; of Q; relative to P; with P;(B;) = 0 and such that for any 4 ¢ ®;,
P.(A — B;) = 0 implies that @Q.(A — B;) = 0; i.e., relative to P;, @; is
singular on B; and absolutely continuous on the complement B of B;.

LemMa 1. If ® DO ®,, then (P + Q)(B:— B;) = 0.

Proor. Since P(B;) = 0, then P(B; — B;) = 0. Now B; ¢ ®;, hence

Q(B; — B1) = Qi(By — By) = 0.

LeMMA 2. Let B D ®e D -+ D Ry = [10Bn. Qu s absolulely conlinuous
with respect lo Py if and only if lim, Q(B,) = 0.

Proor. It follows from Lemma 1 that Q(B,) < Q(B.) for every n. Thus if
lim, Q(B,) = 0, then Q(B,) = 0 and Q,, is absolutely continuous with respect
to P, . Conversely we have Q(lim, sup B,) = 0 since P(B,) = 0 for every
n and lim, sup B, ¢ B, . Consequently lim, Q(B.) = 0.

We can now generalize Rényi’s theorem to obtain

THEOREM 2. Let {A,, n = 1} be a strongly mizing sequence of density a with
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respect to P. For each positive integer n let B, be the minimal o-algebra containing
the sets An, Apy1, -+, and let B, be n®x . If Q s a probability measure on @
such that Q. ts absolutely continuous with respect to P, , then lim, Q(A4,) = a.

Proor. For each positive integer # let B, be the singular set in ®, of Q, relative
to P, , and choose n so large that Q(B,) < ¢ where e is an arbitrary positive
number. For every positive integer m we have

Q(4n) = Q44N Br) + Q(4.N B,) = Q(BL)Q (4,) + Q(4.N By),

where @’ is the probability measure defined by Q'(4) = Q(4 N B.)/Q(B3).
Clearly @’ is absolutely continuous with respect to P when both are confined to
®n , and it follows from Rényi’s theorem that lim,, Q’(A,.) = a. The theorem
follows.

By strengthening the hypothesis, we may obtain a considerably stronger
conclusion for arbitrary decreasing sequences of o-algebras.

THEOREM 3. Let ®; D B2 D - By, = (B be an arbitrary decreasing sequence
of a-subalgebras of @, and Q be a probability measure on @. Then Q. = P, if and
only if lim, (@, — P,) = 0 uniformly over ®, .

Proor. If lim, [@, — P,] = 0 uniformly over ®, then clearly Q., = P, . Con-
versely assume that this is the case. Let u = @ — P and for each positive integer
n let C, be the Hahn set for pin ®, , i.e., u(Cn) = supces, u(C). Now if B £ B, it
can easily be seen that u(B) =< u(C, U B). Suppose now there exists ¢ > 0 and
an infinite sequence {k,} of integers such that u(Ck,) = e. From the remark
above it follows that u(Cx, U Ci,) = p(Ck,) = e Similarly

ﬂ(Ck‘ U Clcg U Cka) g €,

ete. Thus u(U7- Ci;) 2 e and by the same argument u(U7., Ci;) = € for
every n. Hence u(lim, sup Ci,) = e But lim, sup Ci, € B, and by hypothesis
u vanishes on ®, , which is a contradiction. The same argument applies to the
set function P — @, and the theorem is proved. For the application we have
in mind we shall need a result which is an immediate consequence of Theorem 3.

CoRroLLARY. Let {®,,n = 1} be a sequence of o-algebras with @ D & D - -,
and let B = [Va®n . Let Q be a probability measure on G and let {A,, n = 1} be
a sequence of sets. Suppose for each positive integer k there exists a sequence of sets
{Ans, n = 1} with A, x £ B for n sufficiently large such that

lim, [P(A.x) — P(4,)] = lim, [Q(4.) — Q(A4,)] = 0.
Then if Qo = P, we have lim, [P(4,) — Q(A4,)] = 0.

III. Application. Let {X,,n = 1} be a sequence of real random variables and
let P be the probability measure defined on the Borel sets of infinite-dimensional
Euclidean space induced by the finite-dimensional distributions of the process
{X.}. For each positive integer n let ®, be the smallest s-algebra of Borel sets
with respect to which the random variables X, , X,41, -+, are measurable.
The sequence {®,} is then decreasing and we define ®,, = .®, . Let {a,, n = 1}
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be a sequence of real numbers and let {b,, n = 1} be a sequence of positive
numbers with lim, b, = . For each integer n define the set A,(z) by

Aﬂ(x) = {(Sn/bn) - Qn _S_ x}

n

where z is an arbitrary real number and S, = > 14 X
Now suppose @ is the probability measure induced by the finite-dimensional
distributions defined by

k
Q(Xﬁ = ay, "'yXI'k é alc) = HP(X.’I é aj).

= M
Assume now that there exists a probability distribution #(z) such that
lim, Q[4.(x)] = F(2)

for every x which is a continuity point for F(z). We shall be interested in con-
ditions on P such that lim, P[4.(z)] = F(z) at continuity points of F(z). As
we shall show consequently this will in fact follow from the condition P, = Q. .
Thus we first prove

THEOREM 4. Suppose for every e > 0 there exists a positive integer n, depending
only on ¢, and suppose that for every choice of nonnegative integers iy, « - - , & with
N £ 4 < -+ < 1 there exists a k-dimensional probability measure R which may
depend on €, n, , and k, such that for every k-dimensional rectangle

fag <@ S by, o0, < S b}

we have
k
|P(al < X'il Sbh, o, <Xy b)) — Hp(ai < X:‘; = b:‘)l
=1
< GR((11< T é bl, vy O <z = b]g).
Then Py = Qw .
Proor. Let ¢ > 0 and choose 7, accordingly. Let u = P — Q. Then if S is

a finite-dimensional rectangle in ®,, it follows from the hypothesis that there
exists a probability measure R such that |u(S)| < eR(S) = e Now let

{Sm,m 2 1}

be a sequence of disjoint rectangles in ®,, of uniformly bounded dimension and
let S = U,.S. . Then we may choose a probability measure R for which

[#(Sm)| < eR(Sm)

simultaneously for each m, and it follows from the complete additivity of u and
R that |u(S)| £ e Now if 4 is a finite-dimensional cylinder set in ®,, and if
8 is a positive number there is a set S which is the union of a denumerable number
of disjoint rectangles of uniformly bounded dimension such that

(A = 8)| + [u(8 — 4)] <8
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Consequently |u(A4)| < e + §. If B is an arbitrary set in ®,, we may approxi-
mate it arbitrarily closely by finite-dimensional cylinder sets and consequently
lim,, sups.s, |#(B)| = 0 . The theorem follows from Theorem 3.

Now let {X,, n = 1} be a stochastic process satisfying the conditions of
Theorem 4. Define the sets A, .(x) fork = 2,3, ---,andn = k by

Anp(z) = {[(82 — 8i-1)/ba] — an < a}.
Then if z is a continuity point of F(z) it is easily verified that

lim, [Q(4x(2)) — Q(Anx(2))] =0

for every k, and obviously A4, x(x) & ®; . It follows from Theorem 3 and Theorem
4 that limy [P(A.1(x)) — Q(A.x(x))] = 0 uniformly in n = k. From this it is
again easy to verify that lim, [P(4.(z)) — P(A4.x(z))] = 0 and we obtain
lim, P(4.(z)) = F(x).

We summarize in

TaEOREM 5. Let {X,, n = 1} be a stochastic process satisfying the conditions
of Theorem 4. Let F(x) be a distribution function and suppose

limp Q((Sa/bs) — an < ) = F(z)

at every continuity point of F(x). Then lim, P((S:/bs) — ax £ z) = F(x) at
such continuity points.

Révész, [2], arrived at the conclusion of Theorem 5, using conditions somewhat
stronger than those imposed by Theorem 4. However, his derivation is incorrect,
since he concludes that under his conditions P is absolutely continuous with
respect to Q. The following simple example shows that this is in fact not the
case. Let Q be the probability measure corresponding to the stochastic process
{X,, n = 1} where the X, are independent identically distributed random
variables with mean zero, variance one, and continuous distributions. Let P be
the probability measure corresponding to the process {V,, n = 1} where

Y1=Y2=X1, Y,,=X,, for n>2.
Then P is not absolutely continuous with respect to @ since
Qlry =13) =0=1— P(a; = ).

However, it is easily verified, that the conditions of Révész’s theorem apply to
the process {Y,}. Actually his conditions imply that P, = Q. and consequently
his theorem remains valid.
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